43 Matching Results

Search Results

Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

Description: The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
Date: May 2016
Creator: Williams, Kristina
Partner: UNT Libraries

Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection

Description: Boron carbide-aromatic composites, formed by plasma-enhanced co-deposition of carboranes and aromatic precursors, present enhanced electron-hole separation as neutron detector. This is achieved by aromatic coordination to the carborane icosahedra and results in improved neutron detection efficiency. Photoemission (XPS) and FTIR suggest that chemical bonding between B atoms in icosahedra and aromatic contents with preservation of π system during plasma process. XPS, UPS, density functional theory (DFT) calculations, and variable angle spectroscopic ellipsometery (VASE) demonstrate that for orthocarborane/pyridine and orthocarborane/aniline films, states near the valence band maximum are aromatic in character, while states near the conduction band minimum include those of either carborane or aromatic character. Thus, excitation across the band gap results in electrons and holes on carboranes and aromatics, respectively. Further such aromatic-carborane interaction dramatically shrinks the indirect band gap from 3 eV (PECVD orthocarborane) to ~ 1.6 eV (PECVD orthocarborane/pyridine) to ~1.0 eV (PECVD orthocarborane/aniline), with little variation in such properties with aromatic/orthocarborane stoichiometry. The narrowed band gap indicate the potential for greatly enhanced charge generation relative to PECVD orthocarborane films, as confirmed by zero-bias neutron voltaic studies. The results indicate that the enhanced electron-hole separation and band gap narrowing observed for aromatic/orthocarborane films relative to PECVD orthocarborane, has significant potential for a range of applications, including neutron detection, photovoltaics, and photocatalysis. Acknowledgements: This work was supported by the Defense Threat Reduction Agency (Grant No.HDTRA1-14-1-0041). James Hilfiker is also gratefully acknowledged for stimulating discussions.
Date: December 2016
Creator: Dong, Bin
Partner: UNT Libraries

Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

Description: In this experiment, more than one hundred volatile organic compounds were analyzed with the gas chromatograph. Six capillary columns ZB wax plus, ZB 35, TR1MS, TR5, TG5MS and TG1301MS with different polarities have been used for separation of compounds and illicit drugs. The Abraham solvation model has five solute descriptors. The solute descriptors are E, S, A, B, L (or V). Based on the six stationary phases, six equations were constructed as a training set for each of the six columns. The six equations served to calculate the solute descriptors for a set of illicit drugs. Drugs studied are nicotine (S= 0.870, A= 0.000, B= 1.073), oxycodone(S= 2.564. A= 0.286, B= 1.706), methamphetamine (S= 0.297, A= 1.570, B= 1.009), heroin (S=2.224, A= 0.000, B= 2.136) and ketamine (S= 1.005, A= 0.000, B= 1.126). The solute property of Abraham solvation model is represented as a logarithm of retention time, thus the logarithm of experimental and calculated retention times is compared.
Date: August 2015
Creator: Mitheo, Yannick K.
Partner: UNT Libraries

Direct Atomic Level Controlled Growth and Characterization of h-BN and Graphene Heterostructures on Magnetic Substrates for Spintronic Applications

Description: Epitaxial multilayer h-BN(0001) heterostructures and graphene/h-BN heterostructures have many potential applications in spintronics. The use of h-BN and graphene require atomically precise control and azimuthal alignment of the individual layers in the structure. These in turn require fabrication of devices by direct scalable methods rather than physical transfer of BN and graphene flakes, and such scalable methods are also critical for industrially compatible development of 2D devices. The growth of h-BN(0001) multilayers on Co and Ni, and graphene/h-BN(0001) heterostructures on Co have been studied which meet these criteria. Atomic Layer Epitaxy (ALE) of BN was carried out resulting in the formation of macroscopically continuous h-BN(0001) multilayers using BCl3 and NH3 as precursors. X-ray photoemission spectra (XPS) show that the films are stoichiometric with an average film thickness linearly proportional to the number of BCl3/NH3 cycles. Molecular beam epitaxy (MBE) of C yielded few layer graphene in azimuthal registry with BN/Co(0001) substrate. Low energy electron diffraction (LEED) measurements indicate azimuthally oriented growth of both BN and graphene layers in registry with the substrate lattice. Photoemission data indicate B:N atomic ratios of 1:1. Direct growth temperatures of 600 K for BN and 800 to 900 K for graphene MBE indicate multiple integration schemes for applications in spintronics.
Date: August 2016
Creator: Beatty, John D.
Partner: UNT Libraries

The Quantitative Determination of Glass in Slag and Fly Ash by Infrared Spectroscopy

Description: The present study was aimed at developing a new inexpensive and accurate analytical method for determining the glass content of slag and fly ash. Infrared absorption spectroscopy using an internal standard proved to be the method of choice. Both synthetic and commercial slags and fly ashes were investigated.
Date: December 1983
Creator: Eberendu, Alexis N. R.
Partner: UNT Libraries

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Description: The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict more accurate results by increasing the samples with effective functional groups.
Date: May 2012
Creator: Wang, Zhouxing
Partner: UNT Libraries

A Study of Silver: an Alternative Maldi Matrix for Low Weight Compounds and Mass Spectrometry Imaging

Description: Soft-landing ion mobility has applicability in a variety of areas. The ability to produce material and collect a sufficient amount for further analysis and applications is the key goal of this technique. Soft-landing ion mobility has provided a way to deposit material in a controllable fashion, and can be tailored to specific applications. Changing the conditions at which soft-landing ion mobility occurs effects the characteristics of the resulting particles (size, distribution/coverage on the surface). Longer deposition times generated more material on the surface; however, higher pressures increased material loss due to diffusion. Larger particles were landed when using higher pressures, and increased laser energy at ablation. The utilization of this technique for the deposition of silver clusters has provided a solvent free matrix application technique for MALDI-MS. The low kinetic energy of incident ions along with the solvent free nature of soft-landing ion mobility lead to a technique capable of imaging sensitive samples and low mass analysis. The lack of significant interference as seen by traditional organic matrices is avoided with the use of metallic particles, providing a major enhancement in the ability to analyze low mass compounds by MALDI.
Date: May 2014
Creator: Walton, Barbara Lynn
Partner: UNT Libraries

Chemistry, Detection, and Control of Metals during Silicon Processing

Description: This dissertation focuses on the chemistry, detection, and control of metals and metal contaminants during manufacturing of integrated circuits (ICs) on silicon wafers. Chapter 1 begins with an overview of IC manufacturing, including discussion of the common aqueous cleaning solutions, metallization processes, and analytical techniques that will be investigated in subsequent chapters. Chapter 2 covers initial investigations into the chemistry of the SC2 clean - a mixture of HCl, H2O2, and DI water - especially on the behavior of H2O2 in this solution and the impact of HCl concentration on metal removal from particle addition to silicon oxide surfaces. Chapter 3 includes a more generalized investigation of the chemistry of metal ions in solution and how they react with the silicon oxide surfaces they are brought into contact with, concluding with illumination of the fundamental chemical principles that govern their behavior. Chapter 4 shows how metal contaminants behave on silicon wafers when subjected to the high temperature (≥ 800 °C) thermal cycles that are encountered in IC manufacturing. It demonstrates that knowledge of some fundamental thermodynamic properties of the metals allow accurate prediction of what will happen to a metal during these processes. Chapter 5 covers a very different but related aspect of metal contamination control, which is the effectiveness of metal diffusion barriers (e.g. Ru) in holding a metal of interest, (e.g. Cu), where it is wanted while preventing it from migrating to places where it is not wanted on the silicon wafer. Chapter 6 concludes with an overview of the general chemical principles that have been found to govern the behavior of metals during IC manufacturing processes.
Date: May 2005
Creator: Hurd, Trace Q.
Partner: UNT Libraries

Interfacial Study of Copper Electrodeposition with the Electrochemical Quartz Crystal Microbalance (EQCM)

Description: The electrochemical quartz crystal microbalance (EQCM) has been proven an effective mean of monitoring up to nano-scale mass changes related to electrode potential variations at its surface. The principles of operation are based on the converse piezoelectric response of quartz crystals to mass variations on the crystal surface. In this work, principles and operations of the EQCM and piezo-electrodes are discussed. A conductive oxide, ruthenium oxide (RuO2) is a promising material to be used as a diffusion barrier for metal interconnects. Characterization of copper underpotential deposition (UPD) on ruthenium and RuO2 electrodes by means of electrochemical methods and other spectroscopic methods is presented. Copper electrodeposition in platinum and ruthenium substrates is investigated at pH values higher than zero. In pH=5 solutions, the rise in local pH caused by the reduction of oxygen leads to the formation of a precipitate, characterized as posnjakite or basic copper sulfate by means of X-ray electron spectroscopy and X-ray diffraction. The mechanism of formation is studied by means of the EQCM, presenting this technique as a powerful in-situ sensing device.
Date: May 2005
Creator: Ojeda Mota, Oscar Ulises
Partner: UNT Libraries

Metal Oxide Reactions in Complex Environments: High Electric Fields and Pressures above Ultrahigh Vacuum

Description: Metal oxide reactions at metal oxide surfaces or at metal-metal oxide interfaces are of exceptional significance in areas such as catalysis, micro- and nanoelectronics, chemical sensors, and catalysis. Such reactions are frequently complicated by the presence of high electric fields and/or H2O-containing environments. The focus of this research was to understand (1) the iron oxide growth mechanism on Fe(111) at 300 K and 500 K together with the effect of high electric fields on these iron oxide films, and (2) the growth of alumina films on two faces of Ni3Al single crystal and the interaction of the resulting films with water vapor under non-UHV conditions. These studies were conducted with AES, LEED, and STM. XPS was also employed in the second study. Oxidation of Fe(111) at 300 K resulted in the formation of Fe2O3 and Fe3O4. The substrate is uniformly covered with an oxide film with relatively small oxide islands, i.e. 5-15 nm in width. At 500 K, Fe3O4 is the predominant oxide phase formed, and the growth of oxide is not uniform, but occurs as large islands (100 - 300 nm in width) interspersed with patches of uncovered substrate. Under the stress of STM induced high electric fields, dielectric breakdown of the iron oxide films formed at 300 K occurs at a critical bias voltage of 3.8 ± 0.5 V at varying field strengths. No reproducible result was obtained from the high field stress studies of the iron oxide formed at 500 K. Ni3Al(110) and Ni3Al(111) were oxidized at 900 K and 300 K, respectively. Annealing at 1100 K was required to order the alumina films in both cases. The results demonstrate that the structure of the 7 Å alumina films on Ni3Al(110) is k-like, which is in good agreement with the DFT calculations. Al2O3/Ni3Al(111) (γ'-phase) and Al2O3/Ni3Al(110) (κ-phase) ...
Date: August 2005
Creator: Qin, Feili
Partner: UNT Libraries

Study of Ruthenium and Ruthenium Oxide's Electrochemical Properties and Application as a Copper Diffusion Barrier

Description: As a very promising material of copper diffusion barrier for next generation microelectronics, Ru has already obtained a considerable attention recently. In this dissertation, we investigated ruthenium and ruthenium oxide electrochemical properties and the application as a copper diffusion barrier. Cu under potential deposition (UPD) on the RuOx formed electrochemically was first observed. Strong binding interaction, manifesting by the observed Cu UPD process, exists between Cu and Ru as well as its conductive ruthenium oxide. Since UPD can be conformally formed on the electrode surface, which enable Ru and RuOx has a potential application in the next generation anode. The [Cl-] and pH dependent experiment were conducted, both of them will affect UPD Cu on Ru oxide. We also found the Cu deposition is thermodynamically favored on RuOx formed electrochemically. We have studied the Ru thin film (5nm) as a copper diffusion barrier. It can successfully block Cu diffusion annealed at 300 oC for 10min under vacuum, and fail at 450 oC. We think the silicidation process at the interface between Ru and Si. PVD Cu/Ru/Si and ECP Cu/Ru/Si were compared each other during copper diffusion study. It was observed that ECP Cu is easy to diffuse through Ru barrier. The function of RuOx in diffusion study on Cu/Ru/Si stack was discussed. In pH 5 Cu2+ solution, Ru and Pt electrochemical behavior were investigated. A sharp difference was observed compared to low pH value. The mechanism in pH 5 Cu2+ solution was interpreted. An interesting compound (posnjakite) was obtained during the electrochemical process. An appropriate formation mechanism was proposed. Also Cu2O was formed in the process. We found oxygen reduction reaction is a key factor to cause this phenomenon.
Date: August 2005
Creator: Zhang, Yibin
Partner: UNT Libraries

Comparison of 43Sn/43Pb/14Bi Solder and Standard 60Sn/40Pb Solder by Thermocyclic Fatigue Analysis

Description: The thermocyclic fatigue behavior of the low-melting solder 43Sn/43Pb/14Bi has been investigated and compared to that of standard 60Sn/4OPb solder via metallographic analysis (using scanning electron microscopy) and evaluation of the degree of fatigue development (using a fatigue scale as a function of thermocycles). Specimens were subjected to shearing strains imposed by several hundred fatigue thermocycles. Both solder types fatigue by the same microstructural failure mechanism as described by other workers. The mechanism is characterized by a preferential coarsening of the solder joint microstructure at the region of maximum stress concentration where cracks originate.
Date: August 1991
Creator: Calderon, Jose Guadalupe
Partner: UNT Libraries

FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface

Description: Plasma polymerization techniques were used to synthesize and deposit hydrogel on silicon (Si) substrate. Hydrogel is a network of polymer chains that are water-insoluble and has a high degree of flexibility. The various fields of applications of hydrogel include drug release, biosensors and tissue engineering etc. Hydrogel synthesized from different monomers possess a common property of moisture absorption. In this work two monomers were used namely 1-amino-2-propanol (1A2P) and 2(ethylamino)ethanol (2EAE) to produce polymer films deposited on Si ATR crystal. Their moisture uptake property was tested using FTIR-ATR technique. This was evident by the decrease in -OH band in increasing N2 purging time of the films. Secondly, two monomer compounds namely vinyl acetic acid and glycidyl methacrylate which have both amine and carboxylic groups are used as solid surface for the immobilization of bovine serum albumin (BSA). Pulsed plasma polymerization was used to polymerize these monomers with different duty cycles. Initial works in this field were all about protein surface adsorption. But more recently, the emphasis is on covalent bonding of protein on to the surface. This immobilization of protein on solid surface has a lot of applications in the field of biochemical studies. The polymerization of vinyl acetic acid and glycidyl methacrylate were shown as successful method to attach protein on them. Chemical mechanical polishing (CMP) of Cu is one of the processes in the integrated chips manufacturing industry. Benzotriazole is one of the constituents of this CMP slurry used as corrosion inhibitor for Cu. Benzotriazole (C6H5N3) is a nitrogen heterocyclic derivative having three nitrogen atoms, each with an unshared pair of electrons, forming five-membered ring structure. This molecule coordinates with Cu atoms by loosing a proton from one of its nitrogen atom and thereby forming a film which is polymeric in nature that prevents further oxidation of Cu. ...
Date: December 2007
Creator: Pillai, Karthikeyan
Partner: UNT Libraries

Tantalum- and ruthenium-based diffusion barriers/adhesion promoters for copper/silicon dioxide and copper/low κ integration.

Description: The TaSiO6 films, ~8Å thick, were formed by sputter deposition of Ta onto ultrathin SiO2 substrates at 300 K, followed by annealing to 600 K in 2 torr O2. X-ray photoelectron spectroscopy (XPS) measurements of the films yielded a Si(2p) binding energy at 102.1 eV and Ta(4f7/2) binding energy at 26.2 eV, indicative of Ta silicate formation. O(1s) spectra indicate that the film is substantially hydroxylated. Annealing the film to > 900 K in UHV resulted in silicate decomposition to SiO2 and Ta2O5. The Ta silicate film is stable in air at 300K. XPS data show that sputter-deposited Cu (300 K) displays conformal growth on Ta silicate surface (TaSiO6) but 3-D growth on the annealed and decomposed silicate surface. Initial Cu/silicate interaction involves Cu charge donation to Ta surface sites, with Cu(I) formation and Ta reduction. The results are similar to those previously reported for air-exposed TaSiN, and indicate that Si-modified Ta barriers should maintain Cu wettability under oxidizing conditions for Cu interconnect applications. XPS has been used to study the reaction of tert-butylimino tris(diethylamino) tantalum (TBTDET) with atomic hydrogen on SiO2 and organosilicate glass (OSG) substrates. The results on both substrates indicate that at 300K, TBTDET partially dissociates, forming Ta-O bonds with some precursor still attached. Subsequent bombardment with atomic hydrogen at 500K results in stoichiometric TaN formation, with a Ta(4f7/2) feature at binding energy 23.2 eV and N(1s) at 396.6 eV, leading to a TaN phase bonded to the substrate by Ta-O interactions. Subsequent depositions of the precursor on the reacted layer on SiO2 and OSG, followed by atomic hydrogen bombardment, result in increased TaN formation. These results indicate that TBTDET and atomic hydrogen may form the basis for a low temperature atomic layer deposition (ALD) process for the formation of ultraconformal TaNx or Ru/TaNx barriers. The interactions ...
Date: December 2004
Creator: Zhao, Xiaopeng
Partner: UNT Libraries

Synthesis and study of crystalline hydrogels, guided by a phase diagram.

Description: Monodispersed nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid (AA) have been synthesized and used as building blocks for creating three-dimensional networks. The close-packed PNIPAM-co-allylamine and PNIPAM-co-AA nanoparticles were stabilized by covalently bonding neighboring particles at room temperature and at neutral pH; factors which make these networks amicable for drug loading and release. Controlled release studies have been performed on the networks using dextran markers of various molecular weights as model macromolecular drugs. Drug release was quantified under various physical conditions including a range of temperature and molecular weight. These nanoparticle networks have several advantages over the conventional bulk gels for controlling the release of biomolecules with large molecular weights. Monodispersed nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) can self-assemble into crystals with a lattice spacing on the order of the wavelength of visible light. By initiating the crystallization process near the colloidal crystal melting temperature, while subsequently bonding the PNIPAM-co-allylamine particles below the glass transition temperature, a nanostructured hydrogel has been created. The crystalline hydrogels exhibit iridescent patterns that are tunable by the change of temperature, pH value or even protein concentration. This kind of soft and wet hydrogel with periodic structures may lead to new sensors, devices, and displays operating in aqueous solutions, where most biological and biomedical systems reside. The volume-transition equilibrium and the interaction potential between neutral PINPAM particles dispersed in pure water were investigated by using static and dynamic light-scattering experiments. From the temperature-dependent size and energy parameters, the Sutherland-like potential provides a reasonable representation of the inter-particle potential for PNIPAM particles in swollen and in collapsed phases. An aqueous dispersion of PNIPAM particles can freeze at both high and low temperatures. At low temperatures, the freezing occurs at a large particle volume fraction, similar to that in a hard-sphere system; while at high temperature, the freezing occurs at ...
Date: December 2004
Creator: Huang, Gang
Partner: UNT Libraries

Process Evaluation and Characterization of Tungsten Nitride as a Diffusion Barrier for Copper Interconnect Technology

Description: The integration of copper (Cu) and dielectric materials has been outlined in the International Technology Roadmap for Semiconductors (ITRS) as a critical goal for future microelectronic devices. A necessity toward achieving this goal is the development of diffusion barriers that resolve the Cu and dielectric incompatibility. The focus of this research examines the potential use of tungsten nitride as a diffusion barrier by characterizing the interfacial properties with Cu and evaluating its process capability for industrial use. Tungsten nitride (β-W2N) development has been carried out using a plasma enhanced chemical vapor deposition (PECVD) technique that utilizes tungsten hexafluoride (WF6), nitrogen (N2), hydrogen (H2), and argon (Ar). Two design of experiments (DOE) were performed to optimize the process with respect to film stoichiometry, resistivity and uniformity across a 200 mm diameter Si wafer. Auger depth profiling showed a 2:1 W:N ratio. X-ray diffraction (XRD) showed a broad peak centered on the β-W2N phase. Film resistivity was 270 mohm-cm and film uniformity < 3 %. The step coverage (film thickness variance) across a structured etched dielectric (SiO2, 0.35 mm, 3:1 aspect ratio) was > 44 %. Secondary ion mass spectroscopy (SIMS) measurements showed good barrier performance for W2N between Cu and SiO2 with no intermixing of the Cu and silicon when annealed to 390o C for 3 hours. Cu nucleation behavior and thermal stability on clean and nitrided tungsten foil (WxN = δ-WN and β-W2N phases) have been characterized by Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) under controlled ultra high vacuum (UHV) conditions. At room temperature, the Auger intensity ratio vs. time plots demonstrates layer by layer Cu growth for the clean tungsten (W) surface and three-dimensional nucleation for the nitride overlayer. Auger intensity ratio vs. temperature measurements for the Cu/W system indicates a stable interface up to 1000 ...
Date: August 2005
Creator: Ekstrom, Bradley Mitsuharu
Partner: UNT Libraries

Brainstem Lipids' Relationship to Death

Description: Previous work relating postmortem findings with cause of death have focused on the vitreous portion of the body. This research investigated the link between phospholipids in the brainstem and cause of death. The lipids were extracted by the Folch extraction method and then separated by High Performance Thin Layer Chromatography. These techniques gave excellent separation and resolution. Results showed no link between cause of death and the type of lipids found in the brainstem after death.
Date: December 1982
Creator: Schrynemeeckers, Patrick J.
Partner: UNT Libraries

Hydraulic Activity in Synthetic and Commercial Slags

Description: Slag, by itself, shows very little hydraulic activity. However, hydration is greatly accelerated by incorporation of the slag with Portland cement. This phenomenon is due to the activating role of calcium hydroxide released from the hydration of Portland cement. This study was aimed at finding other activators that will increase hydration in both synthetic and commercial slags. The effects of chemical composition and the aggregation state of the slag on the hydration process were also investigated. For the synthetic slags, the aggregation state was altered by different quenching techniques. The chemical composition was varied by synthesizing a series of slags. The degree of hydration was studied by developing a thermogravimetric analysis technique and the glass content was determined using microscopy. Minerals were determined using powder x-ray diffraction analysis.
Date: May 1982
Creator: Saad, Bahruddin bin
Partner: UNT Libraries

Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Description: Tungsten metal is used as an electrical conductor in many modern microelectronic devices. One of the primary motivations for its use is that it can be deposited in thin films by chemical vapor deposition (CVD). CVD is a process whereby a thin film is deposited on a solid substrate by the reaction of a gas-phase molecular precursor. In the case of tungsten chemical vapor deposition (W-CVD) this precursor is commonly tungsten hexafluoride (WF6) which reacts with an appropriate reductant to yield metallic tungsten. A useful characteristic of the W-CVD chemical reactions is that while they proceed rapidly on silicon or metal substrates, they are inhibited on insulating substrates, such as silicon dioxide (Si02). This selectivity may be exploited in the manufacture of microelectronic devices, resulting in the formation of horizontal contacts and vertical vias by a self-aligning process. However, reaction parameters must be rigorously controlled, and even then tungsten nuclei may form on neighboring oxide surfaces after a short incubation time. Such nuclei can easily cause a short circuit or other defect and thereby render the device inoperable. If this loss of selectivity could be controlled in the practical applications of W-CVD, thereby allowing the incorporation of this technique into production, the cost of manufacturing microchips could be lowered. This research was designed to investigate the loss of selectivity for W-CVD in an attempt to understand the processes which lead to its occurrence. The effects of passivating the oxide surface with methanol against the formation of tungsten nuclei were studied. It was found that the methanol dissociates at oxide surface defect sites and blocks such sites from becoming tungsten nucleation sites. The effect of reactant partial pressure ratio on selectivity was also studied. It was found that as the reactant partial pressures are varied there are significant changes in the ...
Date: August 1994
Creator: Cheek, Roger W. (Roger Warren)
Partner: UNT Libraries

Study of Interactions Between Diffusion Barrier Layers and Low-k Dielectric Materials for Copper/Low-k Integration

Description: The shift to the Cu/low-k interconnect scheme requires the development of diffusion barrier/adhesion promoter materials that provide excellent performance in preventing the diffusion and intermixing of Cu into the adjacent dielectrics. The integration of Cu with low-k materials may decrease RC delays in signal propagation but pose additional problems because such materials are often porous and contain significant amounts of carbon. Therefore barrier metal diffusion into the dielectric and the formation of interfacial carbides and oxides are of significant concern. The objective of the present research is to investigate the fundamental surface interactions between diffusion barriers and various low-k dielectric materials. Two major diffusion barriers¾ tatalum (Ta) and titanium nitride (TiN) are prepared by DC magnetron sputtering and metal-organic chemical vapor deposition (MOCVD), respectively. Surface analytical techniques, such as X-ray photoelectronic spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are employed. Ta sputter-deposited onto a Si-O-C low dielectric constant substrate forms a reaction layer composed of Ta oxide and TaC. The composition of the reaction layer varies with deposition rate (1 Å-min-1 vs. 2 Å-sec-1), but in both cases, the thickness of the TaC layer is found to be at least 30 Å on the basis of XPS spectra, which is corroborated with cross-sectional TEM data. Sputter-deposited Cu will not wet the TaC layer and displays facile agglomeration, even at 400 K. Deposition for longer time at 2 Å-sec-1 results in formation of a metallic Ta layer. Sputter deposited Cu wets (grows conformally) on the metallic Ta surface at 300 K, and resists significant agglomeration at up to ~ 600 K. Cu diffusion into the substrate is not observed up to 800 K in the UHV environment. Tetrakis(diethylamido) titanium (TDEAT) interactions with SiO2, Cu and a variety of low-k samples in the presence (~ 10-7 Torr or ...
Date: December 2003
Creator: Tong, Jinhong
Partner: UNT Libraries

Fabrication and light scattering study of multi-responsive nanostructured hydrogels and water-soluble polymers.

Description: Monodispersed microgels composed of poly-acrylic acid (PAAc) and poly(N-isopropylacrylamide) (PNIPAM) interpenetrating networks were synthesized by 2-step method with first preparing PNIPAM microgel and then polymerizing acrylic acid that interpenetrates into the PNIPAM network. The semi-dilute aqueous solutions of the PNIPAM-PAAc IPN microgels exhibit an inverse thermo-reversible gelation. Furthermore, IPN microgels undergo the reversible volume phase transitions in response to both pH and temperature changes associated to PAAc and PNIPAM, respectively. Three applications based on this novel hydrogel system are presented: a rich phase diagram that opens a door for fundamental study of phase behavior of colloidal systems, a thermally induced viscosity change, and in situ hydrogel formation for controlled drug release. Clay-polymer hydrogel composites have been synthesized based on PNIPAM gels containing 0.25 to 4 wt% of the expandable smectic clay Na-montmorillonite layered silicates (Na-MLS). For Na-MLS concentrations ranging from 2.0 to 3.2 wt%, the composite gels have larger swelling ratio and stronger mechanical strength than those for a pure PNIPAM. The presence of Na-MLS does not affect the value of the lower critical solution temperature (LCST) of the PNIPAM. Surfactant-free hydroxypropyl cellulose (HPC) microgels have been synthesized in salt solution. In a narrow sodium chloride concentration range from 1.3 to 1.4 M, HPC chains can self-associate into colloidal particles at room temperature. The microgel particles were then obtained in situ by bonding self-associated HPC chains at 23 0C using divinyl sulfone as a cross-linker. The volume phase transition of the resultant HPC microgels has been studied as a function of temperature at various salt concentrations. A theoretical model based on Flory-Huggins free energy consideration has been used to explain the experimental results. Self-association behavior and conformation variation of long chain branched (LCB) poly (2-ethyloxazoline) (PEOx) with a CH3-(CH2)17 (C18) modified surface are investigated using light scattering techniques in various ...
Date: December 2003
Creator: Xia, Xiaohu
Partner: UNT Libraries

Copper Electrodeposition on Iridium, Ruthenium and Its Conductive Oxide Substrate

Description: The aim of this thesis was to investigate the physical and electrochemical properties of sub monolayer and monolayer of copper deposition on the polycrystalline iridium, ruthenium and its conductive oxide. The electrochemical methods cyclic voltammetry (CV) and chronocoulometry were used to study the under potential deposition. The electrochemical methods to oxidize the ruthenium metal are presented, and the electrochemical properties of the oxide ruthenium are studied. The full range of CV is presented in this thesis, and the distances between the stripping bulk peak and stripping UPD peak in various concentration of CuSO4 on iridium, ruthenium and its conductive oxide are shown, which yields thermodynamic data on relative difference of bonding strength between Cu-Ru/Ir atoms and Cu-Cu atoms. The monolayer of UPD on ruthenium is about 0.5mL, and on oxidized ruthenium is around 0.9mL to 1.0mL. The conductive oxide ruthenium presents the similar properties of ruthenium metal. The pH effect of stripping bulk peak and stripping UPD peak of copper deposition on ruthenium and oxide ruthenium was investigated. The stripping UPD peak and stripping bulk peak disappeared after the pH ≥ 3 on oxidized ruthenium electrode, and a new peak appeared, which means the condition of pH is very important. The results show that the Cl- , SO42- , Br- will affect the position of stripping bulk peak and stripping UPD peak: the stripping bulk peak will shift and decrease if the concentration of halide ions is increasing, and the monolayer of UPD will increase at the same time.
Date: December 2003
Creator: Huang, Long
Partner: UNT Libraries

Interfacial Electrochemistry and Surface Characterization: Hydrogen Terminated Silicon, Electrolessly Deposited Palladium & Platinum on Pyrolyzed Photoresist Films and Electrodeposited Copper on Iridium

Description: Hydrogen terminated silicon surfaces play an important role in the integrated circuit (IC) industry. Ultra-pure water is extensively used for the cleaning and surface preparation of silicon surfaces. This work studies the effects of ultra-pure water on hydrogen passivated silicon surfaces in a short time frame of 120 minutes using fourier transform infrared spectroscopy – attenuated total reflection techniques. Varying conditions of ultra-pure water are used. This includes dissolved oxygen poor media after nitrogen bubbling and equilibration under nitrogen atmosphere, as well as metal contaminated solutions. Both microscopically rough and ideal monohydride terminated surfaces are examined. Hydrogen terminated silicon is also used as the sensing electrode for a potentiometric sensor for ultra-trace amounts of metal contaminants. Previous studies show the use of this potentiometric electrode sensor in hydrofluoric acid solution. This work is able to shows sensor function in ultra-pure water media without the need for further addition of hydrofluoric acid. This is considered a boon for the sensor due to the hazardous nature of hydrofluoric acid. Thin carbon films can be formed by spin coating photoresist onto silicon substrates and pyrolyzing at 1000 degrees C under reducing conditions. This work also shows that the electroless deposition of palladium and platinum may be accomplished in hydrofluoric acid solutions to attain palladium and platinum nanoparticles on a this film carbon surface for use as an electrode. Catalysis of these substrates is studied using hydrogen evolution in acidic media, cyclic voltammetry, and catalysis of formaldehyde. X-ray diffractometry (XRD) is used to ensure that there is little strain on palladium and platinum particles. Iridium is thought to be a prime candidate for investigation as a new generation copper diffusion barrier for the IC industry. Copper electrodeposition on iridium is studied to address the potential of iridium as a copper diffusion barrier. Copper electrodeposition ...
Date: December 2003
Creator: Chan, Raymond
Partner: UNT Libraries

Reactivity of Oxide Surfaces and Metal-Oxide Interfaces: Effects of Water Vapor Pressure on Ultrathin Aluminum Oxide Films, and Studies of Platinum Growth Modes on Ultrathin Oxide Films and Their Effects on Adhesion

Description: The reactivity of oxide surfaces and metal-oxide interfaces play an important role in many technological applications such as corrosion, heterogeneous catalysis, and microelectronics. The focus of this research was (1) understanding the effects of water vapor exposure of ultrathin aluminum oxide films under non-ultrahigh vacuum conditions (>10-9 Torr) and (2) characterization of Pt growth modes on ultrathin Ta silicate and silicon dioxide films and the effects of growth modes on adhesion of a Cu overlayer. These studies were conducted with X-ray photoelectron spectroscopy (XPS). Ni3Al(110) was oxidized (10-6 Torr O2, 800K) followed by annealing (1100K). The data indicate that the annealed oxide film is composed of NiO, Al2O3 and an intermediate phase denoted here as "AlOx". Upon exposure of the oxide film at ambient temperature to increasing water vapor pressure (10-6 - 5 Torr), a shift in both the O(1s) and Al(2p)oxide peak maxima to lower binding energies is observed. In contrast, exposure of Al2O3/Al(polycrystalline) to water vapor under the same conditions results in a high binding energy shoulder in the O(1s) spectra which indicates hydroxylation. Spectral decomposition provides further insight into the difference in reactivity between the two oxide films. The corresponding trends of the O(1s)/Ni0(2p3/2) and Al(2p)/Ni0(2p3/2) spectral intensity ratios suggest conformal changes of the oxide film on Ni3Al(110). The growth behavior of sputter deposited Pt at ~300K on Ta silicate and SiO2 ultrathin films formed on Si(100) was investigated. The XPS data show that Pt deposition results in uniform growth or "wetting" on Ta silicate and 2-D cluster growth on SiO2. Electroless Cu deposition on ~11 monolayers (ML) Pt/Ta silicate film results in an adherent Cu film which passed the Scotch tape test. In contrast, electroless Cu deposition on ~11ML Pt/SiO2 results in a non-adherent Cu film due to weak Pt/SiO2 interaction.
Date: May 2004
Creator: Garza, Michelle
Partner: UNT Libraries