86 Matching Results

Search Results

Laser Processing of Metals and Polymers

Description: A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.
Date: May 31, 2012
Creator: Singaravelu, Senthilraja
Partner: UNT Libraries Government Documents Department

Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

Description: This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Je#11;erson National Accelerator Facil- ity. For both, the weak neutral current interaction (WNC, mediated by the Z{sup 0} boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o#11; unpolarized target hadrons. HAPPEx-III, con- ducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q{sup 2} = 0.62 GeV{sup 2}. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (G{sup s}{sub E,M} ) to the nucleon electromagnetic form factors. A value of A{sub PV} = -23.803{+-}#6; 0.778 (stat){+-}#6; 0.359 (syst) ppm resulted in G{sup s}{sub E} + 0:517G{sup s}{sub M} = 0.003{+-} 0.010 (stat){+-} #6;0.004 (syst){+-}#6; #6;0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q{sup 2} = 0.009 GeV{sup 2}. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the {sup 208}Pb nucleus. The Z{sup 0} boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for #12;nding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the ex- perimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.
Date: May 31, 2012
Creator: Mercado, Luis
Partner: UNT Libraries Government Documents Department

Meausrement of the Neutron Radius of {sup 208}Pb Through Parity Violation in Electron Scattering

Description: In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, R{sub n}, of a heavy nucleus and the proton radius, R{sub p}, to be in the order of several percent. To accurately obtain the difference, R{sub n}-R{sub p}, which is essentially a neutron skin, the Jefferson Lab Lead ({sup 208}Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 208}Pb at an energy of 1.06 GeV and a scattering angle of 5{degrees}#14;. Since Z{sup 0} boson couples mainly to neutrons, this asymmetry provides a clean measurement of R{sub n} with respect to R{sub p}. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x#2;10{sup 7} helicity-window quadruplets. The measured parity-violating electroweak asymmetry A{sub PV} = 0.656 {+-}#6; 0.060 (stat) {+-}#6; 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, R{sub n}-R{sub p} = 0.33{sup +0.16}{sub -0.18} fm and provides the #12;first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of {sup 208}Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.
Date: May 31, 2013
Creator: Saenboonruang, Kiadtisak
Partner: UNT Libraries Government Documents Department

Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer

Description: The goal of the Q-weak experiment is to make a measurement of the proton's weak charge Q{sub W}{sup p} = 1 - 4 sin{sup 2}({theta}{sub W}) to an accuracy of {approx} 4%. This would represent a {approx} 0.3% determination of the weak mixing angle sin{sup 2}({theta}{sub W}) at low energy. The measurement may be used for a precision test of the Standard Model (SM) prediction on the running of sin{sup 2}({theta}{sub W}) with energy scale. The Q-weak experiment operates at Thomas Jefferson National Accelerator Facility (Jefferson Lab). The experiment determines Q{sub W}{sup p} by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q{sup 2} = 0.026 (GeV/c){sup 2} and forward angles (?8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.
Date: May 31, 2012
Creator: Pan, Jie
Partner: UNT Libraries Government Documents Department

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements

Description: Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070+1100/-760 pb was measured at an excitation energy of 16.0 +- 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660+450/-370 pb was measured at 22.0 +- 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480+1730/1370 pb at an excitation energy of 16.0 +- 1.6 MeV. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier. The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid and mixed hydrochloric acid/lithium chloride media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments was to find a system that demonstrates selectivity among the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z = 105). Experiments with niobium and tantalum were performed with carrier (10-6 M), carrier free (10-10 M) and trace (10-16 M) concentrations of metal using hydrochloric acid solution with concentrations ranging from 1 - 11 M. The extraction of niobium and tantalum from mixed hydrochloric acid/lithium chloride media by HDEHP and BEHP as a function of hydrogen ion (H+) concentration was also investigated. The data obtained are used as the basis to discuss the speciation of niobium and tantalum under the conditions studied and to evaluate possible extraction mechanisms. The 74Se(18O,p3n)88gNb excitation function was measured to determine the best energy for producing the 88Nb used in chemistry experiments. A maximum cross section of 495 +- 5 mb was observed at an 18O energy of 74.0 MeV. The half life of 88gNb was measured and determined ...
Date: July 31, 2008
Creator: Gates, Jacklyn M.
Partner: UNT Libraries Government Documents Department

Mode coupling of electron plasma waves

Description: The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta$sup 2$/sub ko/k lambda/sub De/ less than 1 where eta$sup 2$/ sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at $omega$/sub ek/, the Bohn Gross frequency, and at $Omega$/sub k/, the ion acoustic frequency, subject to the damping rates $nu$/sub ek/ and $nu$/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, $omega$/sub pe/ the plasma frequency. (auth)
Date: October 31, 1975
Creator: Harte, J.A.
Partner: UNT Libraries Government Documents Department

Compensation Techniques in Accelerator Physics

Description: Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.
Date: May 31, 2011
Creator: Sayed, Hisham Kamal
Partner: UNT Libraries Government Documents Department

Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

Description: Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed ...
Date: December 31, 2011
Creator: Wang, Guimei
Partner: UNT Libraries Government Documents Department

Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

Description: Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the ...
Date: December 31, 2012
Creator: Liu, Chuyu
Partner: UNT Libraries Government Documents Department

Heat Transfer Analysis and Assessment of Kinetics Systems for PBX 9501

Description: The study of thermal decomposition in high explosive (HE) charges has been an ongoing process since the early 1900s. This work is specifically directed towards the analysis of PBX 9501. In the early 1970s, Dwight Jaeger of Los Alamos National Laboratory (LANL) developed a single-step, two-species kinetics system that was used in the development of one of the first finite element codes for thermal analyses known as EXPLO. Jaeger's research focused on unconfined spherical samples of HE charges to determine if varied heating ramps would cause detonation or deflagration. Tarver and McGuire of Lawrence Livermore National Laboratory (LLNL) followed soon after with a three-step, four-species kinetics system that was developed for confined spheres under relatively fast heating conditions. Peter Dickson et al. of LANL then introduced a kinetics system with four steps and five species that included bimolecular products to capture the effects of the endothermic phase change that the HE undergoes. The results of four experiments are examined to study the effectiveness of these kinetics systems. The experiments are: (1) The LLNL scaled thermal explosion (STEX) experiments on confined cylindrical charges with long heating ramps in the range of 90 hours. (2) The LLNL one-dimensional time to explosion (ODTX) experiments on spherical charges that include confined, partially confined, and aged HE experiments. (3) The LANL unconfined one-dimensional experiments for small spheres. (4) The Naval Air Warfare Center Weapons Division at China Lake experiments on small confined cylinders. The three kinetics systems are applied to each of the four experiments with the use of the finite element analysis (FEA) heat conduction solver COYOTE. The numerical results using the kinetics systems are compared to each other and to the experimental data to determine which kinetics systems are best suited for analyzing conditions such as time to ignition, containment, heating time, and ...
Date: July 31, 2006
Creator: Jorenby, Jeffrey W.
Partner: UNT Libraries Government Documents Department

The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer

Description: This dissertation presents the highest four-momentum transfer, Q^2,quasielastic (x_Bj = 1) results from Experiment E01-020 which systematically explored the 2He(e,e'p)n reaction ("Electro-disintegration" of the deuteron) at three different four-momentum transfers, Q^2 = 0.8, 2.1, and 3.5 GeV^2 and missing momenta, P_miss = 0, 100, 200, 300, 400, and 500 GeV including separations of the longitudinal-transverse interference response function, R_LT, and extractoin of the longitudinal-transverse asymmetry, A_LT. This systematic approach will help to understand the reaction mechanism and the deuteron structure down to the short range part of the nucleon-nucleon interaction which is one of the fundamental missions of nuclear physics. By studying the very short distance structure of the deuteron, one may also determine whether or to what extent the description of nuclei in terms of nucleon/meson degrees of freedom must be supplemented by inclusion of explicit quark effects. The unique combination of energy, current, duty factor, and control of systematics for Hall A at Jefferson Lab made Jefferson Lab the only facility in the world where these systematic studies of the deuteron can be undertaken. This is especially true when we want to understand the short range structure of the deuteron where high energies and high luminosity/duty factor are needed. All these features of Jefferson Lab allow us to examine large missing momenta (short range scales) at kinematics where the effects of final state interactions (FSI), meson exchange currents (MEC), and isobar currents (IC) are minimal, making the extraction of the deuteron structure less model-dependent. Jefferson Lab also provides the kinematical flexibility to perform the separation of R_LT over a broad range of missing momenta and momentum transfers. Experiment E01-020 use the standard Hall A equipment in coincidence configuration in addition to the cryogenic target system. The low and middle Q^2 kinematics were completed in June 2002 and the ...
Date: December 31, 2006
Creator: Ibrahim, Hassan
Partner: UNT Libraries Government Documents Department

Delta Electroproduction in 12-C

Description: The Delta-nucleus potential is a crucial element in the understanding of the nuclear system. Previous electroexcitation measurements in the delta region reported a Q2 dependence of the delta mass indicating that this potential is dependent on the momentum of the delta. Such a dependence is not observed for protons and neutrons in the nuclear medium. This thesis presents the experimental study of the electroexcitation of the delta resonance in 12C, performed using the high energy electron beam at the Thomas Jefferson National Accelerator Facility, and the near 4(pie) acceptance detector CLAS that enables the detection of the full reaction final state. Inclusive, semi inclusive, and exclusive cross sections were measured with an incident electron beam energy of 1.162GeV over the Q2 range 0.175-0.475 (GeV/c)2. A Q2 dependence of the delta mass was only observed in the exclusive measurements indicating that the delta-nucleus potential is affected by the momentum of the delta.
Date: January 31, 2003
Creator: McLauchlan, Steven
Partner: UNT Libraries Government Documents Department

Measurement of single spin asymmetry and fifth structure function for the proton(electron vec, electron Kaon+)Lambda reaction with CEBAF Large Acceptance Spectrometer (CLAS)

Description: The single spin asymmetry, A{sub LT} ?, and the polarized structure function, ?{sub LT}?, for the p(e,e?K{sup +})? reaction in the resonance region have been measured and extracted using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Data were taken at an electron beam energy of 2.567 GeV. The large acceptance of CLAS allows for full azimuthal angle coverage over a large range of center-of-mass scattering angles. Results were obtained that span a range in Q{sup 2} from 0.5 to 1.3 GeV{sup 2} and W from threshold up to 2.1 GeV and were compared to existing theoretical calculations. The polarized structure function is sensitive to the interferences between various resonant amplitudes, as well as to resonant and non-resonant amplitudes. This measurement is essential for understanding the structure of nucleons and searching for previously undetected nucleon excited states (resonances) predicted by quark models. The W dependence of the ?{sub LT} ? in the kinematic regions dominated by s and u channel exchange (cos q{sup cm} k = ?0.50, ?0.167, 0.167) indicated possible resonance structures not predicted by theoretical calculations. The ?{sub LT} ? behavior around W = 1.875 GeV could be the signature of a resonance predicted by the quark models and possibly seen in photoproduction. In the very forward angles where the reaction is dominated by the t-channel, the average ?{sub LT} ? was zero. There was no indication of the interference between resonances or resonant and non-resonant amplitudes. This might be indicating the dominance of a single t-channel exchange. Study of the sensitivity of the fifth structure function data to the resonance around 1900 MeV showed that these data were highly sensitive to the various assumptions of the models for the quantum number of this resonance. This project was part of a larger CLAS program to measure cross ...
Date: August 31, 2005
Creator: Nasseripour, Rahksha
Partner: UNT Libraries Government Documents Department

Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron

Description: One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAC in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F{sub 2} of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g{sub 1} and the virtual photon asymmetry A{sub 1} at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to test duality in spin-dependent structure functions. The goal of experiment E01-012 was to provide such data on the neutron ({sup 3}He) in the moderate momentum transfer (Q{sup 2}) region, 1.0 < Q{sup 2} < 4.0 (GeV/c{sup 2}), where duality is expected to hold. The experiment ran successfully in early 2003 at Jefferson Lab in Hall B. It was an inclusive measurement of longitudinally polarized electrons scattering from a longitudinally or transversely polarized {sup 3}He target. Asymmetries and cross section differences were measured in order to extract the {sup 3}He spin structure function g{sub 1} and virtual photon asymmetry A{sub 1} ...
Date: August 31, 2006
Creator: Solvignon, Patricia
Partner: UNT Libraries Government Documents Department

Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

Description: The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.
Date: December 31, 2004
Creator: Hamilton, David
Partner: UNT Libraries Government Documents Department

Optimal Real-time Dispatch for Integrated Energy Systems

Description: This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined ...
Date: May 31, 2007
Creator: Firestone, Ryan Michael
Partner: UNT Libraries Government Documents Department

Investigation of high-precision {Lambda} hypernuclear spectroscopy via the (e,e'K{sup +}) reaction

Description: The study of {Lambda} hypernuclear structure is very interesting in point of the understanding of the interaction between {Lambda} and nucleon ({Lambda}-N interaction) and its ”strange” structure itself due to the containment of a {Lambda} hyperon which has a strangeness as a new degree of freedom. In the several way to study the Lamda hypernuclei, the (e,e'K{sup +}) reaction spectroscopy is a powerful tool for the precise investigation of {Lamda} hypernuclear structure. The purpose of the preset thesis is the establishment of the experimental design with the efficient data analysis method for the (e,e'K{sup +}) hypernuclear spectroscopic experiment in the wide mass region (from A=7 to A=52). It is very challenging to perform the (e,e'K{sup +}) spectroscopic experiment with such a heavy target, because of the huge electron background due to the bremsstrahlung process. In the experiment, it is required to obtain the necessary hypernuclear yield, suppressing the background event ratio. We achieved these requirements by newly constructing the high resolution electron spectrometer (HES) and splitter magnet (SPL) dedicated to the (e,e'K{sup +}) spectroscopic experiment. The HES consists of two quadrupole magnets and a dipole magnets (Q-Q-D) with a momentum resolution of dp/p = 3x10^-4 at p = 0.84 GeV/c. It was used being vertically tilted by 6.5 degree so as to optimize signal to noise ratio and hypernuclear yield. The SPL is a dipole magnet. The experimental target was placed at the entrance of this magnet. The role of the SPL is to separate four kind of particles; scattered kaons, photons created by the bremsstrahlung, the post beam and scattered electrons. In addition, since the SPL is a part of the kaon and electron spectrometers. We designed the magnet shape carefully considering these points. The experiment was performed with 2.344 GeV/c electron beam from CEBAF at Jefferson Lab. The ...
Date: March 31, 2012
Creator: Kawama, Daisuke
Partner: UNT Libraries Government Documents Department

Size-dependent structure of silver nanoparticles under high pressure

Description: Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.
Date: December 31, 2008
Creator: Koski, Kristie Jo
Partner: UNT Libraries Government Documents Department

Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

Description: The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.
Date: December 31, 2007
Creator: Hughes, Steven Michael
Partner: UNT Libraries Government Documents Department

Seismic velocity estimation from time migration

Description: This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of the Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reacted signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less reliable as the earth becomes horizontally nonconstant. Even mild ...
Date: May 31, 2007
Creator: Cameron, Maria Kourkina
Partner: UNT Libraries Government Documents Department