38 Matching Results

Search Results

Radiative transitions in InGaN quantum-well structures

Description: InGaN based light emitting devices demonstrate excellent luminescence properties and have great potential in lighting applications. Though these devices are already being produced on an industrial scale, the nature of their radiative transition is still not well understood. In particular, the role of the huge (>1MV/cm), built-in electric field in these transitions is still under debate. The luminescence characteristics of InGaN quantum well structures were investigated as a function of excitation power, temperature, and biaxial strain, with an intent of discerning the effects of the electric field and inhomogeneous indium distribution in the QW on the radiative transition. It was found that the luminescence energy did not scale only with the indium concentration but that the QW thickness must also be taken into account. The thickness affects the transition energy due to quantum confinement and carrier separation across a potential drop in the QW. The luminescence peak width was shown to increase with increased indium fraction, due to increased indium inhomogeneity. The carrier lifetime increased exponentially with QW thickness and luminescence wavelength, due to increased carrier separation. Measuring the luminescence energy and carrier lifetime as a function of excitation density showed that the electric field can be screened by strong excitation and, as a consequence, the carrier separation reduced. The temperature dependence of the luminescence showed evidence for bandtails in the density of states, a phenomenon that has been previously related to transition in indium-rich nano-clusters, yet could be accounted for by fluctuations in other parameters that affect the transition energy. Room temperature luminescence efficiency was shown to weakly decrease with increased QW thickness. The application of biaxial strain resulted in either a redshift or blueshift of the luminescence, depending on the sample. The direction and magnitude of the shift in luminescence energy is interpreted in terms of a newly ...
Date: June 27, 2002
Creator: Shapiro, Noad Asaf
Partner: UNT Libraries Government Documents Department

Optical spectroscopy of strongly correlated electron systems

Description: In this thesis, both time-resolved, nonlinear optical spectroscopy and linear spectroscopy are used to investigate the interactions and dynamics of elementary excitations in strongly correlated electron systems. In the first part, we investigate the renormalization of magnetic elementary excitations in the transition metal oxide Cr{sub 2}O{sub 3}. We have created a non-equilibrium population of antiferromagnetic spin waves and characterized its dynamics, using frequency- and time-resolved optical spectroscopy of the exciton-magnon transition. We observed a time-dependent pump-probe line shape, which results from excitation induced renormalization of the spin wave band structure. We present a model that reproduces the basic characteristics of the data, in which we postulate the optical nonlinearity to be dominated by interactions with long-wavelength spin waves, and the dynamics due to spin wave thermalization. Using linear spectroscopy, coherent third-harmonic generation and pump-probe experiments, we measured the optical properties of the charge-transfer (CT) gap exciton in Sr{sub 2}CuO{sub 2}Cl{sub 2}, an undoped model compound for high-temperature superconductors. A model is developed which explains the pronounced temperature dependence and newly observed Urbach tail in the linear absorption spectrum by a strong, phonon-mediated coupling between the charge-transfer exciton and ligand field excitations of the Cu atoms. The third-order nonlinear optical susceptibility within the Cu-O plane of Sr{sub 2}CuO{sub 2}Cl{sub 2} is fully characterized in both amplitude and phase, and symmetry based conclusions are made with respect to the spatial arrangement of the underlying charge distribution. Theoretical considerations ascribe a newly reported resonance in the third-order nonlinear susceptibility at 0.7 eV to a three-photon transition from the ground state to the charge-transfer exciton. An even parity intermediate state of Cudd character, is found to contribute to the transition. Finally, preliminary results of time-resolved pump-probe spectroscopy confirm that the CT exciton or one of its constituent parts couples strongly to phonons, and we ...
Date: February 27, 2001
Creator: Schumacher, Andreas B.
Partner: UNT Libraries Government Documents Department

Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

Description: Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer ...
Date: April 27, 2012
Creator: Xiao, Teng
Partner: UNT Libraries Government Documents Department

Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications

Description: This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.
Date: August 27, 2012
Creator: Lupoi, Jason
Partner: UNT Libraries Government Documents Department

Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

Description: This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.
Date: July 27, 2012
Creator: Ebert, Christopher Hysjulien
Partner: UNT Libraries Government Documents Department

Strange-Particle Production by 1170-MeV/c pi- Mesons

Description: Production of {Lambda} + K{sup 0}, {Sigma}{sup 0} + K{sup 0}, and {Sigma}{sup -} + K{sup +} by 1170-MeV/c {pi}{sup -} mesons has been studied in the Lawrence Radiation Laboratory 72-inch hydrogen bubble chamber, Cross sections, angular distributions, and polarizations are presented. The polarization of the {Sigma}{sup 0} is determined at four center-of-mass angles and found to be small everywhere. Based on published results for the reaction {pi}{sup +} + p {yields} {Sigma}{sup +}, K{sup +}, a comparison of the polarizations of {Sigma}{sup +}, {Sigma}{sup -}, and {Sigma}{sup 0} is made from the charge-independence triangle. A conclusion is reached that the {Sigma}{sup -} polarization should be large, and that the {Sigma}{sup -} and {Sigma}{sup +} polarizations should be opposite in sign.
Date: May 27, 1963
Creator: Anderson, Jared Arnold
Partner: UNT Libraries Government Documents Department

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

Description: Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions ...
Date: June 27, 2001
Creator: Sutherland, Kevin Jerome
Partner: UNT Libraries Government Documents Department

Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

Description: Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO{sub 2} films] revealed that MnO{sub 2} film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO{sub 2} films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO{sub 2} films showed that the Fe(III)-doped RuO{sub 2}-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO{sub 2} films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H{sub 2}O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb{sub 10}Sn{sub 20}Ti{sub 70}, Cu{sub 63}Ni{sub 37} and Cu{sub 25}Ni{sub 75} alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu{sub 63}Ni{sub 37} alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO{sub 3}{sup -} at the Cu-Ni alloy electrode is superior to the response at the pure Cu and Ni electrodes. This is explained on the basis of the synergism of the two different metal sites at these binary ...
Date: August 27, 2002
Creator: Simpson, Brett Kimball
Partner: UNT Libraries Government Documents Department

Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

Description: The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a summary of the research contained in chapters 2-7 and proposes future research ...
Date: August 27, 2002
Creator: Anderson, Brian Curtis
Partner: UNT Libraries Government Documents Department

Implementation of MPICH on Top of MP{_}Lite

Description: The goal of this thesis is to develop a new Channel Interface device for the MPICH Implementation of the MPI (Message Passing Interface) standard using MP{_}Lite. MP{_}Lite is a lightweight message-passing library that is not a full MPI implementation, but offers high performance MPICH (Message Passing Interface CHameleon) is a full implementation of the MPI standard that has the p4 library as the underlying communication device for TCP/IP networks. By integrating MP{_}Lite as a Channel Interface device in MPICH, a parallel programmer can utilize the full MPI implementation of MPICH as well as the high bandwidth offered by MP{_}Lite. There are several layers in the MPICH library where one can tie a new device. The Channel Interface is the lowest layer that requires very few functions to add a new device. By attaching MP{_}Lite to MPICH at the lowest level, the Channel Interface, almost all of the performance of the MP{_}Lite library can be delivered to the applications using MPICH. MP{_}Lite can be implemented either as a blocking or a non-blocking Channel Interface device. The performance was measured on two separate test clusters, the PC and the Alpha miniclusters, having Gigabit Ethernet connections. The PC cluster has two 1.8 GHz Pentium 4 PCs and the Alpha cluster has two 500 MHz Compaq DS20 workstations. Different network interface cards like Netgear, TrendNet and SysKonnect Gigabit Ethernet cards were used for the measurements. Both the blocking and non-blocking MPICH-MP{_}Lite Channel Interface devices perform close to raw TCP, whereas a performance loss of 25-30% is seen in the MPICH-p4 Channel Interface device for larger messages. The superior performance offered by the MPICH-MP{_}Lite device compared to the MPICH-p4 device can be easily seen on the SysKonnect cards using jumbo frames. The throughput curve also improves considerably by increasing the Eager/Rendezvous threshold.
Date: June 27, 2002
Creator: Selvarajan, Shoba
Partner: UNT Libraries Government Documents Department

Geographical and Temporal Dynamics of Chaetocnema Pulicaria and Their Role in Stewart's Disease of Corn in Iowa

Description: This thesis investigated the biology and importance of the corn flea beetle vector and its role in the Stewart's disease of corn pathosystem. This was accomplished by determining the number of corn flea beetle generations that occur in Iowa and by quantifying the proportions of those populations found to be infested with the causal agent of Stewart's disease, pantoea stewartii. In addition, a preliminary study was conducted to determine how soil temperature was influenced by air temperature and how this may be applied to forecasting for Stewart's disease of corn. Research using yellow sticky cards and sweep netting demonstrated that there are overwintering, first, and second field generations of the corn flea beetle in Iowa. It was also observed that there was a period during June of both 1999 and 2000 when corn flea beetles were not found, which is important new management information. This research has also demonstrated that the incidence of P. stewartii-infested corn flea beetles can be monitored by ELISA testing and that the incidence fluctuates greatly throughout the corn growing season. The initial level of inoculum (P. stewartii-infested corn flea beetles in the adult overwintering generation) does not remain static during the spring as was previously hypothesized. This signals that additional research is needed concerning the mechanisms of fluctuation in the proportion of beetles infested with P. stewartii.
Date: May 27, 2001
Creator: Esker, Paul David
Partner: UNT Libraries Government Documents Department

Nonphotochemical Hole-Burning Imaging Studies of in vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

Description: Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (f{Delta}{mu}) were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that {Delta}{mu} values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK ...
Date: June 27, 2002
Creator: Walsh, Richard Joseph
Partner: UNT Libraries Government Documents Department

Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

Description: This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Q{sub y}-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll{sub a} (BChl{sub a}) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.
Date: June 27, 2002
Creator: Matsuzaki, Satoshi
Partner: UNT Libraries Government Documents Department

Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

Description: The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m{sup 2}/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO{sub 3}/(MoO{sub 3} + V{sub 2}O{sub 5}). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V{sup +4} and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V{sub 2}O{sub 5}-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V{sub 2}O{sub 5}, solid solutions of Mo in V{sub 2}O{sub 5}, V{sub 9}Mo{sub 6}O{sub 40}, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO{sub 3}/(V{sub 2}O{sub 5} + MoO{sub 3}), determined by EDS analysis.
Date: May 27, 2002
Creator: Schroeder, William David
Partner: UNT Libraries Government Documents Department

Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

Description: Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn, Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.
Date: June 27, 2001
Creator: Petersen, Michael David
Partner: UNT Libraries Government Documents Department

The Theory of Random Laser Systems

Description: Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge.
Date: June 27, 2002
Creator: Jiang, Xunya
Partner: UNT Libraries Government Documents Department

Modeling of Photonic Band Gap Crystals and Applications

Description: In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point ...
Date: August 27, 2002
Creator: El-Kady, Ihab Fathy
Partner: UNT Libraries Government Documents Department

Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

Description: Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonance (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.
Date: June 27, 2002
Creator: Roberts, Kenneth Paul
Partner: UNT Libraries Government Documents Department

Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds

Description: The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO{sub 2} film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.
Date: June 27, 2002
Creator: Treimer, Stephen Everett
Partner: UNT Libraries Government Documents Department

The Effect of Oxygen Contamination on the Amorphous Structure of Thermally Sprayed Coatings of Cu47Ti33Zr11Ni8Si1

Description: this research has shown that it is possible to deposit coatings of gas atomized Cu{sub 47}Ti{sub 33}Zr{sub 11}Ni{sub 8}Si{sub 1} powders containing various levels of oxygen contamination using plasma arc spray methods. The structure of the coating was found to depend primarily on the spray environment, with an argon atmosphere producing the most amorphous samples for a given starting powder. The oxygen content of the coatings reflected the relative levels of the oxygen contamination in the starting powders. The analysis of the starting powders displayed oxygen contents ranging from 0.125-0.79 wt.%. It was shown that higher oxygen levels lead to more crystalline structure in the starting powders as determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). This trend was found to be true for both the starting powders and for the plasma sprayed coatings. Chemical composition for all starting powders was very close to the nominal alloy composition. Chemical changes in the coatings involved the loss of Cu in coatings where high levels of oxidation were found. Cavitation erosion testing of selected coatings showed a weak trend that coatings prepared by vacuum plasma spray (VPS) had lower damage rates, but there was no clear data to indicate which coating parameters were superior. The range of data produced from testing duplicate coating was too wide to provide a good statistical measure of cavitation erosion resistance. of interest was the fact that when coatings began to show damage from cracking, all samples of a group showed similar damage and usually the damage pattern was somewhat unique to that group of samples. Failure of the coatings was due to features inherent to plasma arc spray (PAS) coating (i.e., pores, splat boundaries, oxide inclusions) rather than the mechanical characteristics of the amorphous alloy.
Date: May 27, 2002
Creator: Besser, Matthew Frank
Partner: UNT Libraries Government Documents Department

Remote Field Eddy Current Probes for the Detection of Stress Corrosion in Transmission Pipelines

Description: Magnetic flux leakage (MFL) is a technique used widely in non-destructive testing (NDT) of natural gas and petroleum transmission pipelines. This inspection method relies on magnetizing the pipe-wall in axial direction. The MFL inspection tool is equipped with an array of Hall sensors located around the circumference of the pipe, which registers the flux leakage caused by any defects present in the pipe-wall. Currently, the tool magnetizes the pipewall in axial direction making it largely insensitive to axially oriented defects. One type of defect, which is of a growing concern in the gas and petroleum industry is the stress corrosion crack (SCC). The SCCs are a result of aging, corrosion, fatigue and thermal stresses. SCCs are predominantly axially oriented and are extremely tight, which makes them impossible to be detected using current inspection technology. A possible solution to this problem is to utilize the remote field eddy current (RFEC) effect to detect axially oriented defects. The RFEC method has been widely used in industry in the inspection of tubular products. The method uses a pair of excitation and pick-up coils. The pick-up coil located in the remote field region, usually two, three pipe-diameters away from the excitation coil. With RFEC the presence of defects is detected by the disturbance in the phase of the signal measured by the pick-up coil relative to that of the excitation coil. Unlike conventional eddy current testing the RFEC method is sensitive to defects on the exterior of the inspected product, which makes it a good candidate for the development of in-line inspection technology. This work focuses on the development of non-destructive testing technique, which uses remote field eddy currents induced by rotating magnetic field (RMF). A major advantage of the RMF is that it makes possible to not only detect a defect but also ...
Date: August 27, 2002
Creator: Ivanov, Plamen Alexandroz
Partner: UNT Libraries Government Documents Department

Analysis of Gd5(Si2Ge2) Microstructure and Phase Transition

Description: With the recent discovery of the giant magnetocaloric effect and the beginning of extensive research on the properties of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, a necessity has developed for a better understanding of the microstructure and crystal structure of this family of rare earth compounds with startling phenomenological properties. The aim of this research is to characterize the microstructure of the Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, with X {approx_equal} 2 and its phase change by using both transmission and electron microscopes. A brief history of past work on Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} is necessary to understand this research in its proper context.
Date: June 27, 2002
Creator: Meyers, John Scott
Partner: UNT Libraries Government Documents Department

Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

Description: The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.
Date: June 27, 2002
Creator: Harnisch, Jennifer Anne
Partner: UNT Libraries Government Documents Department

Magnetic X-Ray Scattering Study of GdCo2Ge2 and NdCo2Ge2

Description: The results of magnetic x-ray resonant exchange scattering (XRES) experiments are important to the development of an understanding of magnetic interactions in materials. The advantages of high Q resolution, polarization analysis, and the ability to study many different types of materials make it a vital tool in the field of condensed matter physics. Though the concept of XRES was put forth by Platzman and Tzoar in 1970, the technique did not gain much attention until the work of Gibbs and McWhan et al. in 1988. Since then, the technique of XRES has grown immensely in use and applicability. Researchers continue to improve upon the procedure and detection capabilities in order to study magnetic materials of all kinds. The XRES technique is particularly well suited to studying the rare earth metals because of the energy range involved. The resonant L edges of these elements fall between 5-10 KeV. Resonant and nonresonant x-ray scattering experiments were performed in order to develop an understanding of the magnetic ordering in GdCo{sub 2}Ge{sub 2} and NdCo{sub 2}Ge{sub 2}.
Date: August 27, 2002
Creator: Good, William
Partner: UNT Libraries Government Documents Department