12 Matching Results

Search Results

GAiN: Distributed Array Computation with Python

Description: Scientific computing makes use of very large, multidimensional numerical arrays - typically, gigabytes to terabytes in size - much larger than can fit on even the largest single compute node. Such arrays must be distributed across a "cluster" of nodes. Global Arrays is a cluster-based software system from Battelle Pacific Northwest National Laboratory that enables an efficient, portable, and parallel shared-memory programming interface to manipulate these arrays. Written in and for the C and FORTRAN programming languages, it takes advantage of high-performance cluster interconnections to allow any node in the cluster to access data on any other node very rapidly. The "numpy" module is the de facto standard for numerical calculation in the Python programming language, a language whose use is growing rapidly in the scientific and engineering communities. numpy provides a powerful N-dimensional array class as well as other scientific computing capabilities. However, like the majority of the core Python modules, numpy is inherently serial. Our system, GAiN (Global Arrays in NumPy), is a parallel extension to Python that accesses Global Arrays through numpy. This allows parallel processing and/or larger problem sizes to be harnessed almost transparently within new or existing numpy programs.
Date: April 24, 2009
Creator: Daily, Jeffrey A.
Partner: UNT Libraries Government Documents Department

A Search for Neutrinoless Tau Decays to Three Leptons

Description: Using approximately 350 million {tau}{sup +}{tau}{sup -} pair events recorded with the BaBar detector at the Stanford Linear Accelerator Center between 1999 and 2006, a search has been made for neutrinoless, lepton-flavor violating tau decays to three lighter leptons. All six decay modes consistent with conservation of electric charge and energy have been considered. With signal selection efficiencies of 5-12%, we obtain 90% confidence level upper limits on the branching fraction {Beta}({tau} {yields} {ell}{ell}{ell}) in the range (4-8) x 10{sup -8}.
Date: September 24, 2008
Creator: Kolb, Jeffrey A. & /SLAC, /Oregon U.
Partner: UNT Libraries Government Documents Department

Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

Description: The study of the reactions between heavy ions and {sup 208}Pb, {sup 209}Bi, {sup 238}U, and {sup 248} Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the {sup 238}U({sup 18}O,xn){sup 256-x}Fm, {sup 238}U({sup 22}Ne,xn){sup 260-x}No, and {sup 248}Cm({sup 15}N,xn){sup 263-x}Lr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The {sup 208}Pb({sup 48}Ca,xn){sup 256-x}No, {sup 208}Pb({sup 50}Ti,xn){sup 258-x}Rf, {sup 208}Pb({sup 51}V,xn){sup 259-x}Db, {sup 209}Bi({sup 50}Ti,xn){sup 259-x}Db, and {sup 209}Bi({sup 51}V,xn){sup 260-x}Sg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics.
Date: May 24, 2002
Creator: Patin, Joshua B.
Partner: UNT Libraries Government Documents Department

Fundamental studies of hydrogen chemisorption on supported monometallic and bimetallic catalysts using microcalorimetry

Description: Highly dispersed transition metal catalysts are used in numerous commercial processes such as hydrocarbon conversions. For example, the use of Pt supported on acidic alumina or silica-alumina for reforming of naphtha in the production of gasoline is well known. Another use of supported catalysts is in automobile emission control where supported Pt-Rh bimetallic catalysts are used. Supported Ru can be used in Fischer-Tropsch synthesis for the production of higher hydrocarbons from synthesis gas. While many of these catalyst systems have been in commercial operation for several decades there is still a lack of consensus regarding the exact role of the catalyst on a molecular level. In particular, little is known about the mechanisms operating on the catalyst surface at the high pressure and high temperature conditions typically used in commercial operations. This report contains the general introduction and conclusions and an appendix containing the operating instructions for a microcalorimeter. Three chapters have been processed separately. They are: the effect of K on the kinetics and thermodynamics of hydrogen adsorption on Ru/SiO{sub 2}; hydrogen adsorption states on silica supported Ru-Ag and Ru-Cu bimetallic catalysts investigated via microcalorimetry; a comparative study of hydrogen chemisorption on silica supported Ru, Rh, and Pt.
Date: June 24, 1997
Creator: Narayan, R.L.
Partner: UNT Libraries Government Documents Department

Design, synthesis, characterization and study of novel conjugated polymers

Description: After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.
Date: June 24, 1997
Creator: Chen, W.
Partner: UNT Libraries Government Documents Department

Photoisomerization and photodissociation dynamics of reactive free radicals

Description: The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociative {tilde A}{sup 2}A{sub 1} and {tilde B}{sup 2}A{sub 2} states of CH{sub 3}S have been investigated. At all photon energies, CH{sub 3} + S({sup 3}P{sub j}), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH{sub 3} umbrella mode and the S({sup 3}P{sub j}) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N{sub 2} photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C{sub 2V} transition state. Resolved vibrational structure of the N{sub 2} photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic transition state. In contrast to the radicals mentioned above, resolved vibrational structure was not observed for the ICNN radical due to extensive fragment rotational excitation, suggesting that intermediate bent states are strongly coupled along the dissociation pathway. The measurements performed in ...
Date: August 24, 2000
Creator: Bise, Ryan T.
Partner: UNT Libraries Government Documents Department

Selective spectroscopic methods for water analysis

Description: This dissertation explores in large part the development of a few types of spectroscopic methods in the analysis of water. Methods for the determination of some of the most important properties of water like pH, metal ion content, and chemical oxygen demand are investigated in detail. This report contains a general introduction to the subject and the conclusions. Four chapters and an appendix have been processed separately. They are: chromogenic and fluorogenic crown ether compounds for the selective extraction and determination of Hg(II); selective determination of cadmium in water using a chromogenic crown ether in a mixed micellar solution; reduction of chloride interference in chemical oxygen demand determination without using mercury salts; structural orientation patterns for a series of anthraquinone sulfonates adsorbed at an aminophenol thiolate monolayer chemisorbed at gold; and the role of chemically modified surfaces in the construction of miniaturized analytical instrumentation.
Date: June 24, 1997
Creator: Vaidya, B.
Partner: UNT Libraries Government Documents Department

Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of {sup 21}Na with improved laser trapping techniques

Description: This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive {sup 21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of {sup 21}Na to the experiment. Efficient manipulation of the {sup 21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of {sup 21}Na. She measured the 3S{sub 1/2}(F=1,m=0)-3S{sub 1/2}(F=2,m=0) atomic level splitting of {sup 21}Na to be 1,906,471,870{+-}200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.
Date: May 24, 1999
Creator: Rowe, Mary A.
Partner: UNT Libraries Government Documents Department

Novel materials and methods for solid-phase extraction and liquid chromatography

Description: This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.
Date: June 24, 1997
Creator: Ambrose, D.
Partner: UNT Libraries Government Documents Department

Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

Description: The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm{sup -1} occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.
Date: November 24, 2004
Creator: McGuire, John Andrew
Partner: UNT Libraries Government Documents Department

Compton Scattering on Nucleons

Description: From introduction: "The present paper deals with a classical calculation in which some of the meson effects can be included to all orders in the meson-nucleon coupling coupling constant, in particular those having to do with the gyration of the nucleon spin and isotopic spin. Such a treatment leads to results qualitatively different from the weak coupling calculations."
Date: May 24, 1954
Creator: Huddlestone, Richard Harold
Partner: UNT Libraries Government Documents Department