20 Matching Results

Search Results

Deciphering the details of RNA aminoglycoside interactions: from atomistic models to biotechnological applications

Description: A detailed study was done of the neomycin-B RNA aptamer for determining its selectivity and binding ability to both neomycin– and kanamycin-class aminoglycosides. A novel method to increase drug concentrations in cells for more efficiently killing is described. To test the method, a bacterial model system was adopted and several small RNA molecules interacting with aminoglycosides were cloned downstream of T7 RNA polymerase promoter in an expression vector. Then, the growth analysis of E. coli expressing aptamers was observed for 12-hour period. Our analysis indicated that aptamers helped to increase the intracellular concentration of aminoglycosides thereby increasing their efficacy.
Date: July 23, 2012
Creator: Ilgu, Muslum
Partner: UNT Libraries Government Documents Department

Generation and Characterization of Anisotropic Microstructures in Rare Earth-Iron-Boron Alloys

Description: The goal of this work is to investigate methods in which anisotropy could be induced in fine-grained alloys. We have identified two general processing routes to creating a fine, textured microstructure: form an amorphous precursor and devitrify in a manner that induces texture or form the fine, textured microstructure upon cooling directly from the liquid state. Since it is possible to form significant amounts of amorphous material in RE-Fe-B alloys, texture could be induced through biasing the orientationof the crystallites upon crystallization of the amorphous material. One method of creating this bias is to form glassy material and apply uniaxial pressure during crystallization. Experiments on this are presented. All of the work presented here utilizes melt-spinning, either to create precursor material, or to achieve a desired final microstructure. To obtain greater control of the system to process these materials, a study was done on the effects of heating the wheel and modifying the wheel’s surface finish on glass formation and phase selection. The second general approach—creating the desired microstructure directly from the liquid—can be done through directional rapid solidification. In particular, alloys melt-spun at low tangential wheel speeds often display directional columnar growth through a portion of the ribbon. By refining and stabilizing the columnar growth, a highly textured fine microstructure is achieved. The effects of adding a segregating element (Ag) on the columnar growth are characterized and presented.
Date: April 23, 2012
Creator: Oster, Nathaniel
Partner: UNT Libraries Government Documents Department

Structural and magnetic properties and superconductivity in Ba(Fe{sub 1-x}TM{sub x}){sub 2}As{sub 2}

Description: We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe{sub 2}As{sub 2}. We grew four series of Ba(Fe{sub 1-x}TM{sub x}){sub 2}As{sub 2} (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe{sub 1-x}Cr{sub x}){sub 2}As{sub 2} and Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} to heat treatment to explore what changes might be induced.
Date: July 23, 2012
Creator: Thaler, Alexander
Partner: UNT Libraries Government Documents Department

Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

Description: Quantum groups in general and the quantum Anti-de Sitter group U{sub q}(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin {ge} 1, {open_quotes}naive{close_quotes} representations are unitarizable only after factoring out a subspace of {open_quotes}pure gauges{close_quotes}, as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of U{sub q}(g), which plays the role of a BRST operator in the case of U{sub q}(so(2,3)) at roots of unity, for any spin {ge} 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard {open_quotes}truncated{close_quotes} tensor product as well as many-particle representations.
Date: May 23, 1997
Creator: Steinacker, H.
Partner: UNT Libraries Government Documents Department

New methods and materials for solid phase extraction and high performance liquid chromatography

Description: This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.
Date: April 23, 1996
Creator: Dumont, P.J.
Partner: UNT Libraries Government Documents Department

Stability of eutectic interface during directional solidification

Description: Directional solidification of eutectic alloys shows different types of eutectic morphologies. These include lamellar, rod, oscillating and tilting modes. The growth of these morphologies occurs with a macroscopically planar interface. However, under certain conditions, the planar eutectic front becomes unstable and gives rise to a cellular or a dendritic structure. This instability leads to the cellular/dendritic structure of either a primary phase or a two-phase structure. The objective of this work is to develop a fundamental understanding of the instability of eutectic structure into cellular/dendritic structures of a single phase and of two-phases. Experimental studies have been carried out to examine the transition from a planar to two-phase cellular and dendritic structures in a ceramic system of Alumina-Zirconia (Al{sub 2}O{sub 3}-ZrO{sub 2}) and in a transparent organic system of carbon tetrabromide and hexachloroethane (CBr{sub 4}-C{sub 2}Cl{sub 6}). Several aspects of eutectic interface stability have been examined.
Date: April 23, 1996
Creator: Han, S.H.
Partner: UNT Libraries Government Documents Department

Photodissociation dynamics of polyatomic molecules

Description: This report consists of five studies as follows: A laser photofragmentation time-of-flight mass spectrometric study of acetophenone at 193 and 248 nm; A 193 nm laser photofragmentation time-of-flight mass spectrometric study of dimethylsulfoxide; 193 nm laser photofragmentation time-of-flight mass spectrometric study of HSCH{sub 2}CH{sub 2}SH; Thiophene biradical decay of the primary laser photofragmentation product at 193 nm; and Scattering cross sections for O({sup 3}P)[SO(X,{sup 3}{Sigma}{sup {minus}})] + He[Ne, Ar, Kr]. Chapters are included for the introduction and general conclusions.
Date: February 23, 1998
Creator: Zhao, H.
Partner: UNT Libraries Government Documents Department

Interfacial characterization and analytical applications of chemically-modified surfaces

Description: The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.
Date: February 23, 1998
Creator: Wang, J.
Partner: UNT Libraries Government Documents Department

Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

Description: A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100--1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.
Date: February 23, 1998
Creator: Osborne, M.G.
Partner: UNT Libraries Government Documents Department

Solidification process in melt spun Nd-Fe-B type magnets

Description: A generalized solidification model has been developed based on a systematic investigation on the microstructure of melt spun Nd-Fe-B alloys. Melt spinning was conducted on initial stoichiometric and TiC added Nd{sub 2}Fe{sub 14}B (2-14-1) compositions to produce under, optimally and over quenched microstructures. Microstructural characterization was carried out by TEM, SEM, Optical microscopy, XRD, DTA, VSM and DC SQUID techniques. By taking the dendritic breakup during recalescence into consideration, this generalized model has successfully explained the solidification process of the melt spun Nd-Fe-B alloys. Challenging the conventional homogeneous nucleation models, the new model explains the fine and uniform equiaxed 2-14-1 microstructure in optimally quenched ribbons as a result of the breakup of the 2-14-1 dendrites which nucleate heterogeneously from the wheel surface and grow dendritically across the ribbon thickness due to the recalescence. Besides this dendritic breakup feature, the under quenched microstructure is further featured with another growth front starting with the primary solidification of Fe phase near the free side, which results in a coarsely grained microstructure with Fe dendritic inclusions and overall variation in microstructure across the ribbon thickness. In addition, because a epitaxy exists between the Fe phase and the 2-14-1, the so-formed coarse 2-14-1 grains may be textured. C-axis texturing was observed in under quenched ribbons. As a constraint to solidification models in this system, the cause and characteristics of this phenomenon has been studied in detail to test the authors proposed model, and agreement has been found. An extension has also been made to understand the solidification process when TiC is added, which suggests that Ti and C slow down the growth front of both Fe and 2-14-1 phase.
Date: February 23, 1998
Creator: Li, C.
Partner: UNT Libraries Government Documents Department

The structure-property relationships of powder processed Fe-Al-Si alloys

Description: Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D{sub 84} < 32 {micro}m). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 {micro}m. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 {micro}m to 104 {micro}m. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase {alpha} + DO{sub 3} structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.
Date: February 23, 1998
Creator: Prichard, P.D.
Partner: UNT Libraries Government Documents Department

Synthesis and characterization of novel group VI metal (Mo, W) nitride and oxide compounds

Description: Investigations into the preparation of tungsten nitrides have involved the synthesis of molecular precursors, and their conversion to tungsten nitrides at relatively low temperatures. Two interesting molecular precursors, [WNCl{sub 3}{center_dot}NCCH{sub 3}]{sub 4} and WN(N{sub 3}){sub 3}{center_dot}xNCCH{sub 3}, have been prepared and characterized. The molecular structure of the first consists of a W{sub 4}N{sub 4} tetrameric core with multiple and single W-N bonds arranged in an alternating fashion. Three new solid state phases, amorphous W{sub 3}N{sub 5}, cubic WN, and W{sub 2}N{sub 2}(C{sub 2}N{sub 2}), have been discovered by solid state and chemical vapor transport reactions. The structures have been investigated. A systematic study in the Ln{sub 2}O{sub 3}-MoO{sub 3}-Mo (Ln = La, Ce, Pr, Nd, Sm) system has been explored to better understand LnMo{sub 8}O{sub 14}. The study has shown that the sizes of the rare-earth cations affect the formation of these phases. Larger cations (La, Ce, and Pr) aid in the formation of trans-Mo{sub 8} bicapped octahedra, and the smaller cations (Nd, Sm) only stabilize the cis-Mo{sub 8} bicapped octahedra. Magnetic susceptibility measurements have indicated that no effective moment contribution arises from the Mo{sub 8} metal clusters, even though the cis-Mo{sub 8} cluster in LnMo{sub 8}O{sub 14}, containing all cis-Mo{sub 8} octahedra, apparently contains an odd number of electrons (23). Electrical resistivity measurements and electronic structure calculations have shown that the LnMo{sub 8}O{sub 14} compounds containing cis-Mo{sub 8} clusters are metallic, and the LnMo{sub 8}O{sub 14} compounds containing a 1:1 ratio of cis- to trans-Mo{sub 8} clusters are semiconducting.
Date: February 23, 1998
Creator: Zhang, Z.
Partner: UNT Libraries Government Documents Department

Neutron scattering studies of the RENi{sub 2}B{sub 2}C (RE = Lu, Y, Ho, Er): Lattice dynamics

Description: The first chapter gives a brief overview of the system discussed in this dissertation. Chapters 2--5 and Appendix B of this dissertation consist of papers that are published, or have been submitted, which show experimental data regarding the phonon softening of LuNi{sub 2}B{sub 2}C. These papers have been removed and processed separately. Chapter 6 will contain a summary of the conclusions up to date. Appendix A will consist of a brief derivation of {chi}(q) which is talked about in the introduction of the dissertation. Appendix B will contain a Born-von Karman model fit to the experimental LuNi{sub 2}B{sub 2}C data and a comparison with experimental data. Appendix C will contain a brief summary of the work done on LuNi{sub 2}B{sub 2}C as well as a complete listing of experimental data taken on the crystals which may be needed later for theoretical models of this system. Appendix D will outline a brief introduction covering some of the field theory used in the theoretical work for this thesis.
Date: February 23, 1998
Creator: Bullock, M.
Partner: UNT Libraries Government Documents Department


Description: Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle ({approx}1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.
Date: October 23, 2006
Creator: Martin, A
Partner: UNT Libraries Government Documents Department

The North American Indians and the Establishment of European Empires 1519-1676

Description: Thesis written by a student in the UNT Honors College discussing the rise of Spanish, English, and French colonialism in the Americas, the conflicts that arose with the native populations, and alliances between the colonists and various tribes.
Date: March 23, 1996
Creator: Lovette, John
Partner: UNT Honors College

Neutron Capture and the Production of 60-Fe in Stellar Environments

Description: The observation of gamma rays associated with the decay of {sup 26}Al and {sup 60}Fe can provide important information regarding ongoing nucleosynthesis in our galaxy. The half-lives of these radioisotopes (7.2 x 10{sup 5} y and 1.5 x 10{sup 6} y, respectively) are long compared to the interval between synthesis events such as supernovae, so they build up in a steady state in the interstellar medium (centered on the galactic plane, where massive stars reside), yet short enough that gamma radiation from their decay may be detected. Additionally, these half-lifes are short compared to the period of galactic revolution, so that observable abundances remain in the proximity of their production sites. Predicted abundances of {sup 26}Al and {sup 60}Fe vary widely between several calculations in the last decade. In 2004, the first observation of the gamma ray flux from {sup 60}Fe decay was reported, with a {sup 60}Fe/{sup 26}Al flux ratio in good agreement with nucleosynthesis modeling from 1995. However, recent calculations that include well motivated updates to the stellar and nuclear physics, predict a flux ratio as much as six times higher than the observed value. It is desirable to understand the discrepancy between the latest calculation, which in principle should have been more accurate, and the observation. In the present study, the uncertainties related to two key nuclear aspects of this problem, namely the neutron capture reaction rates for {sup 59,60}Fe, are investigated. New reaction rates are modeled using local systematics as opposed to the global systematics used in previous studies. Comparisons to experimental data are made whenever possible. The sensitivity of the reaction rates to various input quantities is gauged, and estimates regarding the total uncertainty in the reaction rates are made. The resulting rates and uncertainties are used in parameterized single-zone nucleosynthesis calculations using hydrodynamic conditions ...
Date: August 23, 2005
Creator: Kelley, K
Partner: UNT Libraries Government Documents Department

Search for B to rho/omega gamma decays at BaBar

Description: The authors present the results of the search for the decays B{sup 0/{+-}} {yields} {rho}{sup 0/{+-}}{gamma} (previously observed) and B{sup 0} {yields} {omega}{gamma} (for which currently only an upper limit exists). Together with B {yields} K*{gamma} decays, B {yields} ({rho}/{omega}){gamma} allow us to measure the ratio of CKM-matrix elements |V{sub td}/V{sub ts}|. The analysis is based on the full BABAR dataset of 424.35 fb{sup -1} corresponding to 465 million B{bar B} pairs, and makes heavy use of multivariate classification techniques based on decision trees. They find {Beta}(B{sup {+-}} {yields} {rho}{sup {+-}}{gamma}) = (1.20{sub -0.38}{sup +0.42} {+-} 0.20) x 10{sup -6}, {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) = (0.95{sub -0.21}{sup +0.23} {+-} 0.06) x 10{sup -6}, {Beta}(B{sup 0} {yields} {omega}{gamma}) = (0.51{sub -0.24}{sup +0.27} {+-} 0.10) x 10{sup -6}, where the first error is statistical and the second is systematic. They do not observe a statistically significant signal in the latter channel and set an upper limit at {Beta}(B{sup 0} {yields} {omega}{gamma}) &lt; 0.9 x 10{sup -6} (90% C.L.). They also measure the isospin and SU(3){sub F} violating quantities {Lambda}(B{sup +} {yields} {rho}{sup +}{gamma})/2{Lambda}(B{sup 0} {yields} {rho}{sup 0}{gamma})-1 = -0.43{sub -0.22}{sup +0.25} {+-} 0.10 and {Lambda}(B{sup 0} {yields} {omega}{gamma})/{Lambda}(B{sup 0} {yields} {rho}{sup 0}{gamma})-1 = -0.49{sub -0.27}{sup +0.30} {+-} 0.10.
Date: September 23, 2008
Creator: Piatenko, Timofei & /SLAC, /Caltech
Partner: UNT Libraries Government Documents Department

Adsorbate structures and catalytic reactions studied in the torrpressure range by scanning tunneling microscopy

Description: High-pressure, high-temperature scanning tunneling microscopy (HPHTSTM) was used to study adsorbate structures and reactions on single crystal model catalytic systems. Studies of the automobile catalytic converter reaction [CO + NO {yields} 1/2 N{sub 2} + CO{sub 2}] on Rh(111) and ethylene hydrogenation [C{sub 2}H{sub 4} + H{sub 2} {yields} C{sub 2}H{sub 6}] on Rh(111) and Pt(111) elucidated information on adsorbate structures in equilibrium with high-pressure gas and the relationship of atomic and molecular mobility to chemistry. STM studies of NO on Rh(111) showed that adsorbed NO forms two high-pressure structures, with the phase transformation from the (2 x 2) structure to the (3 x 3) structure occurring at 0.03 Torr. The (3 x 3) structure only exists when the surface is in equilibrium with the gas phase. The heat of adsorption of this new structure was determined by measuring the pressures and temperatures at which both (2 x 2) and (3 x 3) structures coexisted. The energy barrier between the two structures was calculated by observing the time necessary for the phase transformation to take place. High-pressure STM studies of the coadsorption of CO and NO on Rh(111) showed that CO and NO form a mixed (2 x 2) structure at low NO partial pressures. By comparing surface and gas compositions, the adsorption energy difference between topsite CO and NO was calculated. Occasionally there is exchange between top-site CO and NO, for which we have described a mechanism for. At high NO partial pressures, NO segregates into islands, where the phase transformation to the (3 x 3) structure occurs. The reaction of CO and NO on Rh(111) was monitored by mass spectrometry (MS) and HPHTSTM. From MS studies the apparent activation energy of the catalytic converter reaction was calculated and compared to theory. STM showed that under high-temperature reaction conditions, ...
Date: May 23, 2003
Creator: Hwang, Kevin Shao-Lin
Partner: UNT Libraries Government Documents Department

Intense Ion Beam for Warm Dense Matter Physics

Description: The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) ...
Date: May 23, 2008
Creator: Coleman, Joshua Eugene
Partner: UNT Libraries Government Documents Department