25 Matching Results

Search Results

Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei

Description: Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. {sup 242}Es was produced via the {sup 233}U({sup 14}N,5n){sup 242}Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 {+-} 3 seconds. The ECDF of {sup 242}Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 {+-} 18 MeV. The probability of delayed fission (P{sub DF}) was measured to be 0.006 {+-} 0.002. In conjunction with this experiment, the excitation functions of the {sup 233}U({sup 14}N,xn){sup 247{minus}x}Es and {sup 233}U({sup 15}N,xn){sup 248{minus}x}Es reactions were measured for {sup 243}Es, {sup 244}Es and {sup 245}Es at projectile energies between 80 MeV and 100 MeV.
Date: January 5, 2000
Creator: Shaughnessy, Dawn A.
Partner: UNT Libraries Government Documents Department

A texture-based framework for improving CFD data visualization in a virtual environment

Description: In the field of computational fluid dynamics (CFD) accurate representations of fluid phenomena can be simulated hut require large amounts of data to represent the flow domain. Most datasets generated from a CFD simulation can be coarse, {approx}10,000 nodes or cells, or very fine with node counts on the order of 1,000,000. A typical dataset solution can also contain multiple solutions for each node, pertaining to various properties of the flow at a particular node. Scalar properties such as density, temperature, pressure, and velocity magnitude are properties that are typically calculated and stored in a dataset solution. Solutions are not limited to just scalar properties. Vector quantities, such as velocity, are also often calculated and stored for a CFD simulation. Accessing all of this data efficiently during runtime is a key problem for visualization in an interactive application. Understanding simulation solutions requires a post-processing tool to convert the data into something more meaningful. Ideally, the application would present an interactive visual representation of the numerical data for any dataset that was simulated while maintaining the accuracy of the calculated solution. Most CFD applications currently sacrifice interactivity for accuracy, yielding highly detailed flow descriptions hut limiting interaction for investigating the field.
Date: May 5, 2005
Creator: Bivins, Gerrick O'Ron
Partner: UNT Libraries Government Documents Department

Slag recycling of irradiated vanadium

Description: An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.
Date: April 5, 1995
Creator: Gorman, P.K.
Partner: UNT Libraries Government Documents Department

Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

Description: Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.
Date: August 5, 2003
Creator: Zou, Lijuan
Partner: UNT Libraries Government Documents Department

Development of high Sensitivity Materials for Applications in Magneto-Mechanical Torque Sensor

Description: The Matteucci effect, which mainly manifests itself as the change of magnetization of a material with torsional stress, is currently of great technological interest because of the search for magnetic torque sensors. Magnetic torque sensors are important to future improvements of automobiles and industrial robots. It is well known that the magnetic state of a material depends on both the external magnetic field and external stress which causes strain and change in magnetization of the material. The former phenomenon has been well understood in both theory and application. However, the magnetic state dependence of stress is not adequately understood and the experimental data is of limited extent. In this project, the Matteucci effect in iron, cobalt, nickel and permalloy rods has been documented when they were in magnetic remanence status along the axis and nickel ring when they were in remanence status along the circumference. The effect of annealing on the magnetomechanical effect in nickel and the temperature dependence of the magnetomechanical sensitivity has also been examined. Factors related to the sensitivity at equilibrium condition have been theoretically developed. it is found in the experiments that the mechanism of magnetic domain wall movement plays an important role rather than the domain rotation. A higher sensitivity was found by domain wall movement mechanism than that by domain rotation mechanism. However, the domain wall movement will result in more hysteresis than domain wall rotation. The dynamic process of Matteucci effect of iron, cobalt, permally, especially as-fabricated and annealed nickel rods have been examined. A tentative explanation for the difference of these in terms of magnetic domain configuration and domain wall movement was given. As a result, another method of configuring and processing magnetic domains to get a linear magnetomechanical response other than that suggested by Garshelis, which was the basic method before ...
Date: August 5, 2003
Creator: Shen, Yuping
Partner: UNT Libraries Government Documents Department

VE-Suite: Coupling Visualization and Computational Environments to Support on-the-fly Engineering Design

Description: CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing large dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.
Date: August 5, 2003
Creator: Li, Song
Partner: UNT Libraries Government Documents Department

A Model for the Behavior of Magnetic Tunnel Junctions

Description: A magnetic tunnel junction is a device that changes its electrical resistance with a change in an applied magnetic field. A typical junction consists of two magnetic electrodes separated by a nonmagnetic insulating layer. The magnetizations of the two electrodes can have two possible extreme configurations, parallel and antiparallel. The antiparallel configuration is observed to have the higher measured resistance and the parallel configuration has the lower resistance. To switch between these two configurations a magnetic field is applied to the device which is primarily used to change the orientation of the magnetization of one electrode usually called the free layer, although with sufficient high magnetic field the orientation of the magnetizations of both of the electrodes can be changed. The most commonly used models for describing and explaining the electronic behavior of tunnel junctions are the Simmons model and the Brinkman model. However, both of these models were designed for simple, spin independent tunneling. The Simmons model does not address the issue of applied magnetic fields nor does it address the form of the electronic band structure in the metallic electrodes, including the important factor of spin polarization. The Brinkman model is similar, the main difference between the two models being the shape of the tunneling barrier potential between the two electrodes. Therefore, the research conducted in this thesis has developed a new theoretical model that addresses these important issues starting from basic principles. The main features of the new model include: the development of equations for true spin dependent tunneling through the insulating barrier, the differences in the orientations of the electrode magnetizations on either side of the barrier, and the effects of the density of states function on the behavior of the junction. The present work has explored densities of states that are more realistic than the ...
Date: August 5, 2003
Creator: Baker, Bryan John
Partner: UNT Libraries Government Documents Department

Miniaturized Analytical Platforms From Nanoparticle Components: Studies in the Construction, Characterization, and High-Throughput Usage of These Novel Architectures

Description: The scientific community has recently experienced an overall effort to reduce the physical size of many experimental components to the nanometer size range. This size is unique as the characteristics of this regime involve aspects of pure physics, biology, and chemistry. One extensively studied example of a nanometer sized experimental component, which acts as a junction between these three principle scientific theologies, is deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). These biopolymers not only contain the biological genetic guide to code for the production of life-sustaining materials, but are also being probed by physicists as a means to create electrical circuits and furthermore as controllable architectural and sensor motifs in the chemical disciplines. Possibly the most common nano-sized component between these sciences are nanoparticles composed of a variety of materials. The cross discipline employment of nanoparticles is evident from the vast amount of literature that has been produced from each of the individual communities within the last decade. Along these cross-discipline lines, this dissertation examines the use of several different types of nanoparticles with a wide array of surface chemistries to understand their adsorption properties and to construct unique miniaturized analytical and immunoassay platforms. This introduction will act as a literature review to provide key information regarding the synthesis and surface chemistries of several types of nanoparticles. This material will set the stage for a discussion of assembling ordered arrays of nanoparticles into functional platforms, architectures, and sensors. The introduction will also include a short explanation of the atomic force microscope that is used throughout the thesis to characterize the nanoparticle-based structures. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 examines the self-assembly of polymeric nanoparticles exhibiting a variety of surface chemistries and attempts to deconvolute general adsorption rules for their assembly on various substrates. ...
Date: August 5, 2003
Creator: Pris, Andrew David
Partner: UNT Libraries Government Documents Department

Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

Description: The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.
Date: August 5, 2003
Creator: Li, Bingtao
Partner: UNT Libraries Government Documents Department

The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

Description: Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either {alpha}-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.
Date: August 5, 2003
Creator: Cheon, Kwang-Ohk
Partner: UNT Libraries Government Documents Department

Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

Description: Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH{sup +}3{sup -} and mechanisms of ligand displacement and oxidation were proposed.
Date: August 5, 2003
Creator: Shan, Xiaopeng
Partner: UNT Libraries Government Documents Department

Generalized Portable SHMEM Library for High Performance Computing

Description: This dissertation describes the efforts to design and implement the Generalized Portable SHMEM library, GPSHMEM, as well as supplementary tools. There are two major components of the GPSHMEM project: the GPSHMEM library itself and the Fortran 77 source-to-source translator. The rest of this thesis is divided into two parts. Part I introduces the shared memory model and the distributed shared memory model. It explains the motivation behind GPSHMEM and presents its functionality and performance results. Part II is entirely devoted to the Fortran 77 translator call fgpp. The need for such a tool is demonstrated, functionality goals are stated, and the design issues are presented along with the development of the solutions.
Date: August 5, 2003
Creator: Parzyszek, Krzysztof
Partner: UNT Libraries Government Documents Department

Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

Description: The work presented in this dissertation has investigated three distinct areas of interest in the field of quasicrystals: bulk structure, transport properties, and electronic structure. First, they have described the results of a study which explored the fundamental interactions between the atomic species of the icosahedral Al-Pd-Mn quasicrystal. The goal of this work was to determine whether the pseudo-MacKay or Bergman type clusters have a special stability or are merely a geometric coincidence. This was carried out by using laser vaporization to produce gas-phase metal clusters, which were analyzed using time-of-flight mass spectrometry. Both the kinetic and thermodynamic stabilities of the clusters were probed. The data indicated no special stability for either pseudo-MacKay or Bergman type clusters as isolated units. This, however, is not proof that these clusters are simply a geometric coincidence. It is possible that such clusters only have stability in the framework of the bulk matrix and do not exist as isolated units. Next, they have reported their investigations of the bulk thermal transport properties of a decagonal Al-Ni-Co two dimensional quasicrystal in the temperature range 373K-873K. The properties of a sample oriented along the periodic axis and another oriented along the aperiodic axis were measured. A high degree of anisotropy was observed between the aperiodic and periodic directions. Additionally, the properties were measured for a sample miscut to an orientation 45{sup o} off-axis. The properties of the miscut sample were shown to have good agreement with a theoretical model used to describe thermal transport in metallic single crystals. This model only considers thermal transport by a free-electron gas; therefore, agreement with experimental data suggests the validity of the Drude free-electron model for the decagonal Al-Ni-Co at these temperatures. Consequently, the observed anisotropy may be adequately described using classical transport equations. Transport behavior is described in terms ...
Date: August 5, 2003
Creator: Barrow, Jason A.
Partner: UNT Libraries Government Documents Department

High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

Description: Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.
Date: August 5, 2003
Creator: Zhong, Wenwan
Partner: UNT Libraries Government Documents Department

Measurement of branching fraction ratios and CP asymmetries in B &#8594D0 CPK decays with the BABAR detector

Description: The primary goals of the BABAR experiment are the detection of CP violation (CPV) in the B meson system, the precise measurement of some of the elements of the CKM matrix and the measurement of the rates of rare B meson decays. At present, BABAR has achieved major successes: (1) the discovery, in neutral B decays, of direct and mixing-induced CP violation; (2) accurate measurements of the magnitudes of the CKM matrix elements |V{sub cb}| and |V{sub ub}|; (3) a precise measurement of the CKM parameter {beta} {triple_bond} arg[- V{sub cd}V*{sub cb}/V{sub td}V*{sub tb}]; (4) a first measurement of the CKM parameters {alpha} {triple_bond} arg[- V{sub td}V*{sub tb}/V{sub ud}V*{sub ub}], {gamma} {triple_bond} arg[- V{sub ud}V*{sub ub}/V{sub cd}V*{sub cb}]; and (5) the observation of several rare B decays and the discovery of new particles (in the charmed and charmonium mesons spectroscopy). However, the physics program of BABAR is not yet complete. Two of the key elements of this program that still need to be achieved are: (1) the observation of direct CP violation in charged B decays, which would constitute the first evidence of direct CPV in a charged meson decay; and (2) the precise measurement of {alpha} and {gamma}, which are necessary ingredients for a stringent test of the Standard Model predictions in the quark electroweak sector. A possibility for the discovery of direct CP violation in charged B decays would be the observation of a non-vanishing rate asymmetry in the Cabibbo-suppressed decay B{sup -} {yields} D{sup 0} K{sup -}, with the D{sup 0} decaying to either a CP-even or a CP-odd eigenstate. This class of decays can also provide theoretically-clean information on {gamma}.
Date: May 5, 2010
Creator: Marchiori, Giovanni & U., /Pisa
Partner: UNT Libraries Government Documents Department

Intermittent Turbulence in the Very Stable Ekman Layer

Description: INTERMITTENT TURBULENCE IN THE VERY STABLE EKMAN LAYER This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).
Date: January 5, 2001
Creator: Barnard, James C.
Partner: UNT Libraries Government Documents Department

Russian National Security Police and the Enlargement of NATO

Description: Thesis written by a student in the UNT Honors College discussing the projected growth of the North Atlantic Treaty Organization, its desired expansion into eastern Europe, and Russia's response.
Date: December 5, 1995
Creator: Burson, Jefferson C.
Partner: UNT Honors College

Local chromatin structure of heterochromatin regulates repeatedDNA stability, nucleolus structure, and genome integrity

Description: Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in euchromatin. Remarkably, human euchromatin and fly heterochromatin share similar features; such as repeated DNA content, intron lengths and open reading frame sizes. Human cells likely stabilize their DNA content via mechanisms and factors similar to those in Drosophila heterochromatin. ...
Date: May 5, 2007
Creator: Peng, Jamy C.
Partner: UNT Libraries Government Documents Department

The Artisanal Nuke

Description: Abstract not provided
Date: February 5, 2014
Creator: Dixon, M C
Partner: UNT Libraries Government Documents Department

Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

Description: The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface ...
Date: August 5, 2009
Creator: Lawler, Katherine
Partner: UNT Libraries Government Documents Department

Measurement of CP Content and Time-Dependent CP Violation in B0 --> D*+D*- Decays

Description: This dissertation presents the measurement of the Cp-odd fraction and time-dependent CP violation parameters for the B{sup 0} {yields} D*{sup +} D*{sup -} decay. These results are based on the full BABAR dataset of (467 {+-} 5) x 10{sup 6} B{bar B} pairs collected at the PEP-II B Factory at the Stanford Linear Accelerator Center. An angular analysis finds that the CP-odd fraction of the B{sup 0} {yields} D*{sup +} D*{sup -} decay is R{sub {perpendicular}} = 0.158 {+-} 0.028 {+-} 0.006, where the first uncertainty is statistical, and the second is systematic. A fit to the flavor-tagged, time-dependent, angular decay rate yields C{sub +} = 0.02 {+-} 0.12 {+-} 0.02; C{sub {perpendicular}} = 0.41 {+-} 0.50 {+-} 0.08; S{sub +} = -0.76 {+-} 0.16 {+-} 0.04; S{sub {perpendicular}} = -1.81 {+-} 0.71 {+-} 0.16, for the CP-odd ({perpendicular}) and CP-even (+) contributions. Constraining these two contributions to be the same results in C = 0.047 {+-} 0.091 {+-} 0.019; S = -0.71 {+-} 0.16 {+-} 0.03. These measurements are consistent with the Standard Model and with measurements of sin2{beta} from B{sup 0} {yields} (c{bar c})K{sup 0} decays.
Date: January 5, 2009
Creator: Anderson, Jacob M.
Partner: UNT Libraries Government Documents Department