109 Matching Results

Search Results

Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

Description: Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS.
Date: October 21, 1999
Creator: Brown, T.A. & Gillespie, G.H.
Partner: UNT Libraries Government Documents Department

Interannual/decadal variability in MJO activity as diagnosed in the 40-year NCEP/NCAR reanalysis and simulated in an ensemble of GISST integrations

Description: The Madden-Julian Oscillation (MJO) is the dominant mode of tropical variability at intraseasonal timescales. It displays substantial interannual variability in intensity which may have important implications for the predictability of the coupled system. The reasons for this interannual variability are not understood. The interannual behaviour of the MJO has been diagnosed initially in the 40-year NCEP/NCAR Reanalysis by calculating the variance of the 20-100 day filtered zonal mean zonal wind (10 o N-10 o S averaged) in a 100- day moving window. The results suggest that prior to the mid-1970s the activity of the MJO was consistently lower than during the latter part of the record. This may be related to either inadequacies in the data coverage, particularly over the tropical Indian Ocean prior to the introduction of satellite observations, or to the real effects of a decadal timescale warming in the tropical SSTs. This interdecadal trend is captured by the dominant EOF (explaining 28% of the variance) of the monthly mean SSTs (after removal of the mean seasonal cycle), as used in the NCEP/NCAR Reanalysis for the region of the tropics where the MJO is convectively active (i.e., 60 o E-180 o E, 20 o S-20 o N). During the latter part of 1970�s there was an abrupt change from a predominantly negative PC1 (i.e. colder Indian Ocean) to a positive PC1 (i.e. warmer Indian Ocean), indicative of a general warming of the tropical Indian Ocean by at least 0.5 o K over the last 40 years. However, on interannual timescales, the teleconnection patterns between MJO activity and SST show only a weak, barely significant, influence of El Niño in which the MJO is more active during the cold phase. As well as the NCEP/NCAR Reanalysis, a 4-member ensemble of 45 year integrations with the Hadley Centre climate model ...
Date: April 21, 1999
Creator: Nortley, F; Rowell, D P; Slingo, J M & Sperber, K R
Partner: UNT Libraries Government Documents Department

Inertial Fusion Energy Development: What is Needed and What will be Learned at the National Ignition Facility

Description: Successful development of inertial fusion energy (IFE) requires that many technical issues be resolved. Separability of drivers, targets, chambers and other IFE power plant subsystems allows resolution of many of these issues in off-line facilities and programs. Periodically, major integrated facilities give a snapshot of the rate of progress toward the ultimate solutions. The National Ignition Facility (NIF) and Laser Megajoule (LMJ) are just such integrating facilities. This paper reviews the status of IFE development and projects what will be learned from the NIF and LMJ.
Date: October 21, 1999
Creator: Hogan, W.J.
Partner: UNT Libraries Government Documents Department

Flash Vacuum Pyrolysis of Lignin Model Compounds: Reaction Pathways of Aromatic Methoxy Groups

Description: Currently, there is interest in utilizing lignin, a major constituent of biomass, as a renewable source of chemicals and fuels. High yields of liquid products can be obtained from the flash or fast pyrolysis of biomass, but the reaction pathways that lead to product formation are not understood. To provide insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds at 500 C. This presentation will focus on the FVP of {beta}-ether linkages containing aromatic methoxy groups and the reaction pathways of methoxy-substituted phenoxy radicals.
Date: March 21, 1999
Creator: Britt, P. F.; Buchanan, A. C., III & Martineau, D. R.
Partner: UNT Libraries Government Documents Department

Biomedical Applications of the Information-efficient Spectral Imaging Sensor (ISIS)

Description: The Information-efficient Spectral Imaging Sensor (ISIS) approach to spectral imaging seeks to bridge the gap between tuned multispectral and fixed hyperspectral imaging sensors. By allowing the definition of completely general spectral filter functions, truly optimal measurements can be made for a given task. These optimal measurements significantly improve signal-to-noise ratio (SNR) and speed, minimize data volume and data rate, while preserving classification accuracy. The following paper investigates the application of the ISIS sensing approach in two sample biomedical applications: prostate and colon cancer screening. It is shown that in these applications, two to three optimal measurements are sufficient to capture the majority of classification information for critical sample constituents. In the prostate cancer example, the optimal measurements allow 8% relative improvement in classification accuracy of critical cell constituents over a red, green, blue (RGB) sensor. In the colon cancer example, use of optimal measurements boost the classification accuracy of critical cell constituents by 28% relative to the RGB sensor. In both cases, optimal measurements match the performance achieved by the entire hyperspectral data set. The paper concludes that an ISIS style spectral imager can acquire these optimal spectral images directly, allowing improved classification accuracy over an RGB sensor. Compared to a hyperspectral sensor, the ISIS approach can achieve similar classification accuracy using a significantly lower number of spectral samples, thus minimizing overall sample classification time and cost.
Date: January 21, 1999
Creator: Gentry, S.M. & Levenson, R.
Partner: UNT Libraries Government Documents Department

Bundle Binding in Polyelectrolyte Solutions

Description: Stiff polyelectrolytes are found to spontaneously form oriented bundles. Conditions under which bundling occurs are found. Molecular dynamics simulations show that divalent counterions are necessary, and the chains must be sufficiently long and stiff. No aggregation occurs for monovalent counterions. For flexible or short chains aggregation occurs, but bundle formation does not. Due to dynamical constraints the systems tend to order into a network of connected bundles, not a single bundle.
Date: January 21, 1999
Creator: Stevens, M.J.
Partner: UNT Libraries Government Documents Department

Recent MELCOR and VICTORIA Fission Product Research at the NRC

Description: The MELCOR and VICTORIA severe accident analysis codes, which were developed at Sandia National Laboratories for the U. S. Nuclear Regulatory Commission, are designed to estimate fission product releases during nuclear reactor accidents in light water reactors. MELCOR is an integrated plant-assessment code that models the key phenomena in adequate detail for risk-assessment purposes. VICTORIA is a more specialized fission- product code that provides detailed modeling of chemical reactions and aerosol processes under the high-temperature conditions encountered in the reactor coolant system during a severe reactor accident. This paper focuses on recent enhancements and assessments of the two codes in the area of fission product chemistry modeling. Recently, a model for iodine chemistry in aqueous pools in the containment building was incorporated into the MELCOR code. The model calculates dissolution of iodine into the pool and releases of organic and inorganic iodine vapors from the pool into the containment atmosphere. The main purpose of this model is to evaluate the effect of long-term revolatilization of dissolved iodine. Inputs to the model include dose rate in the pool, the amount of chloride-containing polymer, such as Hypalon, and the amount of buffering agents in the containment. Model predictions are compared against the Radioiodine Test Facility (RTF) experiments conduced by Atomic Energy of Canada Limited (AECL), specifically International Standard Problem 41. Improvements to VICTORIA's chemical reactions models were implemented as a result of recommendations from a peer review of VICTORIA that was completed last year. Specifically, an option is now included to model aerosols and deposited fission products as three condensed phases in addition to the original option of a single condensed phase. The three-condensed-phase model results in somewhat higher predicted fission product volatilities than does the single-condensed-phase model. Modeling of U02 thermochemistry was also improved, and results in better prediction of vaporization ...
Date: January 21, 1999
Creator: Bixler, N.E.; Cole, R.K.; Gauntt, R.O.; Schaperow, J.H. & Young, M.F.
Partner: UNT Libraries Government Documents Department

Photocatalysis Using Semiconductor Nanoclusters

Description: We report on experiments using nanosize MoS{sub 2} to photo-oxidize organic pollutants in water using visible light as the energy source. We have demonstrated that we can vary the redox potentials and absorbance characteristics of these small semiconductors by adjusting their size, and our studies of the photooxidation of organic molecules have revealed that the rate of oxidation increases with increasing bandgap (i.e. more positive valence band and more negative conduction band potentials). Because these photocatalysis reactions can be performed with the nanoclusters fully dispersed and stable in solution, liquid chromatography can be used to determine both the intermediate reaction products and the state of the nanoclusters during the reaction. We have demonstrated that the MoS{sub 2} nanoclusters remain unchanged during the photooxidation process by this technique. We also report on studies of MoS{sub 2} nanoclusters deposited on TiO{sub 2} powder.
Date: January 21, 1999
Creator: Thurston, T.R. & Wilcoxon,J.P.
Partner: UNT Libraries Government Documents Department

A Criticality Safety Study on Storing Unirradiated Cintichem-Type Targets at Sandia National Laboratories

Description: This criticality safety analysis is performed to determine the effective multiplication factor (k{sub eff}) for a storage cabinet filled with unirradiated Cintichem-type targets. These targets will be used to produce {sup 99}Mo at Sandia National Laboratories and will be stored on-site prior to irradiation in the Annular Core Research Reactor. The analysis consisted of using the Monte Carlo code MCNP (Version 4A) to model and predict the k{sub eff} for the proposed dry storage configuration under credible loss of geometry and moderator control. Effects of target pitch, non-uniform loading, and target internal/external flooding are evaluated. Further studies were done with deterministic methods to verify the results obtained from MCNP and to obtain a clearer understanding of the parameters affecting system criticality. The diffusion accelerated neutral particle transport code ONEDANT was used to model the target in a one-dimensional, infinite half-slab geometry and determine the critical slab thickness. Hand calculations were also completed to determine the critical slab thickness with modified one-group, and one-group, two region approximations. Results obtained from ONEDANT and the hand calculations were compared to applicable cases in a commonly used criticality safety analysis handbook. Overall, the critical slab thicknesses obtained in the deterministic analysis were much larger than the dimensions of the cabinet and further support the predictions by MCNP that a critical system cannot be attained for the base case or in conditions where loss of geometry and moderation control occur.
Date: April 21, 1999
Creator: Romero, D.J.; Parma, E.J. & Busch, R.D.
Partner: UNT Libraries Government Documents Department

Effect of Substrate Composition on the Piezoelectric Response of Reactively Sputtered AlN Thin Films

Description: Deposition parameters were found to have a marked effect on piezoelectric response of reactive radio frequency (RF) sputtered AlN thin films. The authors observed peizoelectric response values ranging from {minus}3.5 to +4.2 pm/V for 1 {micro}m thick AlN films deposited onto Ti/Ru electrode stacks. An investigation of the effects of deposition parameters, in particular the nature of the Ru/AlN interface, was conducted. The lag time between deposition of adjacent thin film layers appeared to have the greatest affect on the value of the piezoelectric response. This suggests that chemical reaction occurring on the Ru thin film surface is responsible for changing an important thin film property such as dipole orientation within the overlying AlN thin film.
Date: April 21, 1999
Creator: Clem, P.G.; Dimos, D.B.; Gonzales, D.M.; Ruffner, J.A. & Tuttle, B.A.
Partner: UNT Libraries Government Documents Department

Modeling and Simulation - The Effects of Grain Coarsening on Local Stresses and Strains in Solder Microstructure

Description: A critical issue in the long-term reliability of solder connections used in electronic packages is the joint failure during thermal cycling. Presently in most finite element analysis to predict the solder joint fatigue failures, solder is assumed as a homogeneous single-phase metal. However in the last decade, several metallurgical studies have shown that solder microstructure may have a role in early solder joint failures (ref 1). Investigators have observed (ref 1) that solder microstructure coarsens in local bands during aging and during thermal cycle fatigue. In a failed solder joint, the fatigue cracks are found in these bands of coarse grains. It is speculated that the grain coarsening increases the local strains within the microstructure, thereby increasing the likelihood for a crack to initiate. The objective of this study is to model and simulate the effect of grain coarsening on local stresses and strains. During solidification of eutectic Pb/Sn solder, two types of microstructure form, namely lamellar and equiaxed. In this study, I have developed a computer code to generate both types of microstructures of varying grain coarseness. This code is incorporated into the finite element (FE) code that analyzes the local stresses and strains within the computer-generated microstructure. The FE code, specifically developed for this study, uses an algorithm involving the sparse matrix and iterative solver. This code on a typical single-processor machine will allow the analyst to use over 1 million degrees of freedom. For higher number of degrees of freedom, we have also developed a code to run on a parallel machine using message passing interface. The data reported in this paper were obtained using the single-processor code. The solder microstructure, if assumed to be homogeneous single phase, has gradual variation in local stresses and strains. In 2-phase solder, von mises stresses and strains are heterogeneously distributed. ...
Date: January 21, 1999
Creator: Chanchani, R.
Partner: UNT Libraries Government Documents Department

Hybrid Blends of Non-Traditional Safety and Reliability Analysis Tools

Description: Traditional safety and reliability analysis methods are applicable to many standard problems, including those examples illustrated in most formal courses. However, there are many real-world situations for which non-traditional methods appear to be more appropriate, mainly because most practical problems involve substantial subjectivity about the inputs and models used. This paper surveys some of the most applicable approaches found in a recent research study. Each approach is developed individually and is illuminated by selecting example situations of apparent applicability. Then, the combinational blending of the approaches with each other and with traditional methodology is discussed.
Date: April 21, 1999
Creator: Cooper, J.A.
Partner: UNT Libraries Government Documents Department

Work of Adhesion Measurements of Silicone Networks Using Contract Mechanics

Description: Work of adhesion (Wa) measurements are being studied for several types of polymer/metal combinations in order to obtain a better understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. A primary concern is whether studies of model systems can be extended to systems of technological interest. One study performed in our laboratory involved the determination of Wa between silicone (PDMS) and Al surfaces in order to establish potential adhesive failure mechanisms. Our initial work with PDMS was based on Dow Corning 170 Sylgard. PDMS hemispheres were synthesized following the procedure outlined by Chaudhury and Whitesides where the filler was stripped from the commercial silicone by centrifuging. Wa between PDMS surfaces was determined using the JKR method. Our results for the Wa of PDMS were in agreement with those reported by Chaudhury and Whitesides. However, further JKR studies using these PDMS hemispheres on flat Al surfaces were fraught with difficulty. We could not discriminate hydrogen-bonding effects between Al{sub 2}O{sub 3} and hydroxyl groups in the PDMS and other possible bonding mechanisms. It was suggested that commercial systems contain inhibitors and additives that interfere with understanding the PMDS/Al interface. Therefore, the current study uses pure PDMS networks synthesized in our lab. Also, two contact mechanics methods were deployed to measure the Wa--JKR method using two hemispheres and a LEFM method using a cylinder containing a circumferential crack. This paper contains a description of the synthesis of the PDMS used for these studies and the determination of Wa between PDMS surfaces using the JKR method, contact angle measurements, and a LEFM method that consists of a cylinder containing a circumferential crack.
Date: April 21, 1999
Creator: Benkoski, J.; Emerson, J.A.; Miller, G.V. & Pearson, R.A.
Partner: UNT Libraries Government Documents Department

Server-Side JavaScript Debugging: Viewing the Contents of an Object

Description: JavaScript allows the definition and use of large, complex objects. Unlike some other object-oriented languages, it also allows run-time modifications not only of the values of object components, but also of the very structure of the object itself. This feature is powerful and sometimes very convenient, but it can be difficult to keep track of the object's structure and values throughout program execution. What's needed is a simple way to view the current state of an object at any point during execution. There is a debug function that is included in the Netscape server-side JavaScript environment. The function outputs the value(s) of the expression given as the argument to the function in the JavaScript Application Manager's debug window [SSJS].
Date: April 21, 1999
Creator: Hampton, J. & Simons, R.
Partner: UNT Libraries Government Documents Department

Azo Dyes and Their Interfacial Activity: Implications for Multiphase Flow Experiments

Description: Interfacial effects play an important role in governing multiphase fluid behavior in porous media (Neustadter 1984; Tuck et al. 1988). For instance, several dimensionless numbers have been developed to express important force ratios applicable to multiphase flow in porous media (Morrow and Songkran 1981; Chatzis and Morrow 1984; Wardlaw 1988; Pennell et al. 1996; Dawson and Roberts 1997). These force ratios emphasize the importance of interfacial properties. Our objectives are to provide chemical information regarding the dyes commonly used in multiphase flow visualization studies and to show the surface chemistry effects of the most commonly used dye, Sudan IV, in the tetrachloroethylene (PCE)-water-glass system
Date: April 21, 1999
Creator: Tuck, D.M.
Partner: UNT Libraries Government Documents Department

Examining emissions policy issues with an integrated assessment model

Description: In the policy analysis process of asking ``What if'' questions, there is considerable advantage in the analyst being able to address the questions directly rather than sending the questions to scientists in particular disciplines and awaiting answers. Obviously the former option is likely to produce speedier results than the latter; in addition, the questions can be easily modified as the issues change or become more focused. The primary potential shortcoming of an analyst addressing questions that may be beyond his or her particular expertise is that the policy analyst may not understand the limitations of the analysis. Here the author briefly describes a peer-reviewed integrated assessment model that can be exercised within minutes in a desktop environment, discuss some of the advantages and limitations of the approach, and exercise portions of the model to compare with observations. Because of the nature of the conference at which this paper is being presented, the discussion focuses on the air pollution modeling components of the integrated assessment.
Date: October 21, 1999
Creator: Shannon, J. D.
Partner: UNT Libraries Government Documents Department

The Role of Interfacial Properties on MEMS Performance and Reliability

Description: We have constructed a humidity-controlled chamber in which deflections of polysilicon cantilever beams are observed by interferometry, resulting in in-situ adhesion measurements within a fracture mechanics framework. From adhesion energy measurements for uncoated hydrophilic beams, we demonstrate an exponential dependence of adhesion on relative humidity (RH). We can explain this trend with a single-asperity model for capillary condensation. For coated hydrophobic beams, adhesion is independent of RH up to a threshold value which depends on the coating used. However, we have found that exposure to very high RH ({ge}90%) ambients can cause a dramatic increase in adhesion, surprisingly with a stronger effect for perfluorodecyltrichlorosilane (FDTS, C{sub 10}H{sub 4}F{sub 17}SiCl{sub 3}) than octadecyltrichlorosilane (ODTS, C{sub 18}H{sub 37}SiCl{sub 3}). Newly developed computational mechanics to measure adhesion in the presence of an applied load allow us to explore how the adhesion increase develops. We believe that water adsorption at silanol sites at the FDTS/substrate interface, possibly exacerbated by coupling agent migration, leads to water islanding and the subsequent adhesion increase at very high RH levels.
Date: May 21, 1999
Creator: de Boer, M.P.; Knapp, J.A.; Mayer, T.M. & Michalske, T.A.
Partner: UNT Libraries Government Documents Department

Ba{sub 1{minus}x}Sr{sub x}TiO{sub 3} thin film sputter-growth processes and electrical property relationships for high frequency devices

Description: Precise control of Ba{sub 1{minus}x}Sr{sub x}Ti0{sub 3} (BST) film composition is critical for the production of high-quality BST thin films. Specifically, it is known that nonstoichiometry greatly affects the electrical properties of BST film capacitors. The authors are investigating the composition-microstructure-electrical property relationships of polycrystalline BST films produced by magnetron sputter-deposition using a single target with a Ba/Sr ratio of 50/50 and a (Ba+Sr)/Ti ratio of 1.0. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O{sub 2}) process pressure, while the O{sub 2}/Ar ratio did not strongly affect the metal ion composition. The crystalline quality as well as the measured dielectric constant, dielectric tunability, and electrical breakdown voltage of BST films have been found to be strongly dependent on the composition of the BST films, especially the (Ba+Sr)/Ti ratio. The authors discuss the impact of BST film composition control, through film deposition and process parameters, on the electrical properties of BST capacitors for high frequency devices.
Date: December 21, 1999
Creator: Im, J.; Auciello, O.; Streiffer, S. K.; Baumann, P. K.; Eastman, J. A.; Kaufman, D. Y. et al.
Partner: UNT Libraries Government Documents Department

Neutron transfer kernels in the resonance domain in the harmonic crystal model.

Description: To describe neutron scattering the resonance domain of the nuclear fuel isotopes, the static model is widely in use in nuclear data processing codes. With this model the influence of chemical binding on the transfer cross section is not taken into account since the nucleus is considered to be in rest and isolated in the laboratory system. Further, the application of the free gas model to the resonant scattering of neutrons shows that the up-scattering probability is strongly dependent on the incident neutron energy. If the latter is smaller than the resonance energy then the free gas model predicts an enormous chance for the neutron to gain energy after collision. Neither the static nor free gas model is adequate to describe the resonant scattering of neutrons in a crystal. This fact can induce non-negligible errors in reactor calculations and, in particular, in the estimation of the Doppler coefficient. In the present paper the author proposes the theoretical study of the possibility to estimate the neutron transfer cross sections in the harmonic crystal approximation.
Date: December 21, 1999
Creator: Naberejnev, D. G.
Partner: UNT Libraries Government Documents Department

Reduction and precipitation of neptunium(V) by sulfate-reducing bacteria.

Description: Migration of neptunium, as NpO{sub 2}{sup +}, has been identified as a potentially important pathway for actinide release at nuclear waste repositories and existing sites of subsurface contamination. Reduction of Np(V) to Np(IV) will likely reduce its volubility, resulting in lowered subsurface migration. The ability of sulfate-reducing bacteria (SRB) to utilize Np(V) as an electron acceptor was investigated, because these bacteria are active in many anaerobic aquifers and are known to facilitate the reduction of metals and radionuclides. Pure and mixed cultures of SRB were able to precipitate neptunium during utilization of pyruvate, lactate, and hydrogen as electron donors in the presence and absence of sulfate. The neptunium in the precipitate was identified as Np(IV) using X-ray absorption near edge spectroscopy (XANES) analysis. In mixed-culture studies, the addition of hydrogen to consortia grown by pyruvate fermentation stimulated neptunium reduction and precipitation. Experiments with pure cultures of Desulfovibrio vulgaris, growing by lactate fermentation in the absence of sulfate or by sulfate reduction, confirm that the organism is active in neptunium reduction and precipitation. Based on our results, the activity of SRB in the subsurface may have a significant, and potentially beneficial, impact on actinide mobility by reducing neptunium volubility.
Date: October 21, 1999
Creator: Banaszak, J. E.; Rittmann, B. E. & Reed, D. T.
Partner: UNT Libraries Government Documents Department

The importance of lead-free electronics processes

Description: The Environmental Protection Agency (EPA) is placing increased importance on reducing lead-bearing wastes. Toward this end, the EPA has proposed that reporting thresholds for the Toxic Release Inventory (TRI) be lowered to ten pounds of lead content per year. The US electronics industry is also placing a high priority on lead reduction or elimination. The Association of Connecting Electronics Industries, which is the major trade association for electronics packaging, including printed circuit (PC) board manufacturers, has launched a lead-free initiative that seeks to eliminate lead in solder, in PC board etch resists and finish coats, and as tinning for component leads. Europe and Japan are also considering various regulations that will phase out lead in the next few years. In response to EPA and electronics industry priorities, the DOE complex will soon need to address lead phase-out issues. LLNL is now developing approaches for eliminating lead from PC board etch-resist operations. LLNL is seeking funding to continue this work and to eliminate other major uses of lead in electronics operations, particularly in hot-air solder leveling as a PC board finish, and tin-lead solder for component assembly operations. LLNL seeks to take a proactive leadership role in the DOE complex with respect to the elimination of lead. The envisioned lead-elimination project will be approximately two years in length. During the first year, lead-free etch resists and finish coats will be analyzed, and the best ones identified for electronics assembly and PC board fabrication. During the second year, lead-free solders will be examined and tested for compatibility with alternative PC board finish coats. Cost avoidance opportunities resulting from lead elimination include avoided TRI reporting expenses and reduction in PC board fabrication-related wastes through implementation of more efficient fabrication processes. Integrated Safety Management considerations are also relevant. Handling lead-bearing alloys poses safety issues ...
Date: October 21, 1999
Creator: Meltzer, M
Partner: UNT Libraries Government Documents Department

Resonant Auger studies of metallic systems

Description: Results of resonant Auger spectroscopy experiments are presented for Cu, Co, and oxidized Al. Sub-lifetime narrowing of Auger spectra and generation of sub-lifetime narrowed absorption spectra constructed from Auger yield measurements, were observed. Resonant Auger yields are used to identify three valence states of oxidized Al. Partial absorption yield spectra were derived giving detailed electronic information and thickness information for the various chemical states of the bulk metal, the passivating aluminum oxide layer, and the metal-oxide interface region. In addition, the total absorption yield spectrum for the oxidized Al sample was constructed from the partial yield data, supporting the consistency of the authors method.
Date: October 21, 1999
Creator: Coulthard, I.; Antel, W. J., Jr.; Frigo, S. P.; Freeland, J. W.; Moore, J.; Calaway, W. S. et al.
Partner: UNT Libraries Government Documents Department

Neutron reflectometry as a tool to study magnetism.

Description: Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane of the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales.
Date: September 21, 1999
Creator: Felcher, G. P.
Partner: UNT Libraries Government Documents Department

Collectivity of the ''Three-Phonon'' Region in {sup 100}Ru

Description: We have studied the quadrupole degree of freedom in a typical vibrational nucleus, {sup 100}Ru. From inelastic neutron scattering at the Van de Graaff accelerator of the University of Kentucky, lifetimes of states in {sup 100}Ru were determined. Absolute transition rates or limits thereon were extracted and compared to the theoretical description of this nucleus.
Date: December 21, 1999
Creator: Genilloud, L.; Brown, T.B.; Corminboeuf, G & Garrett, P.
Partner: UNT Libraries Government Documents Department