1,609 Matching Results

Explore Results

Modeling the wind-fields of accidental releases with an operational regional forecast model

Description: The Atmospheric Release Advisory Capability (ARAC) is an operational emergency preparedness and response organization supported primarily by the Departments of Energy and Defense. ARAC can provide real-time assessments of atmospheric releases of radioactive materials at any location in the world. ARAC uses robust three-dimensional atmospheric transport and dispersion models, extensive geophysical and dose-factor databases, meteorological data-acquisition systems, and an experienced staff. Although it was originally conceived and developed as an emergency response and assessment service for nuclear accidents, the ARAC system has been adapted to also simulate non-radiological hazardous releases. For example, in 1991 ARAC responded to three major events: the oil fires in Kuwait, the eruption of Mt. Pinatubo in the Philippines, and the herbicide spill into the upper Sacramento River in California. ARAC`s operational simulation system, includes two three-dimensional finite-difference models: a diagnostic wind-field scheme, and a Lagrangian particle-in-cell transport and dispersion scheme. The meteorological component of ARAC`s real-time response system employs models using real-time data from all available stations near the accident site to generate a wind-field for input to the transport and dispersion model. Here we report on simulation studies of past and potential release sites to show that even in the absence of local meteorological observational data, readily available gridded analysis and forecast data and a prognostic model, the Navy Operational Regional Atmospheric Prediction System, applied at an appropriate grid resolution can successfully simulate complex local flows.
Date: September 11, 1995
Creator: Albritton, J.R.; Lee, R.L. & Sugiyama, G.
Partner: UNT Libraries Government Documents Department

Nuclear space power safety and facility guidelines study

Description: This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.
Date: September 11, 1995
Creator: Mehlman, W. F.
Partner: UNT Libraries Government Documents Department

TWRS privatization: Phase I monitoring well engineering study and decommissioning plan

Description: This engineering study evaluates all well owners and users, the status or intended use of each well, regulatory programs, and any future well needs or special purpose use for wells within the TWRS Privatization Phase I demonstration area. Based on the evaluation, the study recommends retaining 11 of the 21 total wells within the demonstration area and decommissioning four wells prior to construction activities per the Well Decommissioning Plan (WHC-SD-EN-AP-161, Rev. 0, Appendix I). Six wells were previously decommissioned.
Date: September 11, 1996
Creator: Williams, B.A.
Partner: UNT Libraries Government Documents Department

Kinetics of Mn-based sorbents for hot coal gas desulfurization: Task 2, Exploratory experimental studies: Single pellet tests; Rate mechanism analysis. Quarterly report, June 15, 1996--September 15, 1996

Description: Currently, the Morgantown Energy Technology Center, Department of Energy (DOE/METC) is actively investigating alternative hot fuel gas desulfurization sorbents for application to the Integrated Gasification Combined Cycle (IGCC). A sorbent must be highly active towards sulfur at high temperatures and pressures, and under varying degrees of reducing atmospheres. Also, it must regenerate nearly ideally to maintain activity over numerous cycles. Furthermore, regeneration must yield a sulfur product which is economically recoverable directly or indirectly. Several metal oxides have been investigated as regenerable sorbents for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot fuel gases. MnO was shown to have an intrinsic reaction rate approximately one order of magnitude greater than the rate or reaction with either CaO or ZnO and two orders of magnitude greater than the reaction rate with V{sub 2}0{sub 3}. Manganese also shows desulfurization potential in the temperature range of 600-700{degrees}C where metal oxides currently known to be reactive with H{sub 2}S are unsatisfactorily. In response to stability difficulties of single and binary metal oxide sorbents, increasing effort is being directed towards incorporation of an inert component into sorbent formulation as witnessed by the various Zn-titanates. Primarily, the inert component increases pore structure integrity while stabilizing the active metal oxide against reduction. This report will address testing of Mn-based sorbents in an ambient pressure fixed-bed reactor. Steady-state H{sub 2}S concentrations and breakthrough times will be presented.
Date: September 11, 1996
Creator: Hepworth, M.T.
Partner: UNT Libraries Government Documents Department

Tank farm nuclear criticality review

Description: The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site.
Date: September 11, 1996
Creator: Bratzel, D. R.
Partner: UNT Libraries Government Documents Department

Control system for BCP processing facility at FNAL

Description: The surface processing is one of the key elements of superconducting RF cavity fabrication. Safety and reliability are the main requirements for the chemical surface treatment facility being developed at FNAL. Accepting the Buffered Chemical Polishing (BCP) as the baseline process, a ''gravity feed and open etching tank'' approach has been chosen at this stage. This choice resulted in the introduction of a control system with a strong automation since the number of elements to be controlled at different steps of the process is rather big. In order to allow for maximum flexibility, two operational modes were defined within the control system: semi-automatic, which requires an operator's decision to move from one stage to another, and manual. This paper describes the main features of the control system for the BCP facility that is under development at FNAL.
Date: September 11, 2003
Creator: al., Cristian Boffo et
Partner: UNT Libraries Government Documents Department

Hydrofluoric Acid Corrosion Study of High-Alloy Materials

Description: A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical ...
Date: September 11, 2002
Creator: Osborne, P.E.
Partner: UNT Libraries Government Documents Department

Test and Evaluation Plan for Waste Feed Delivery Project W-521

Description: The purpose of this Test and Evaluation Plan (TEP) is to identify the Test and Evaluation (T&E) activities required to confirm that design and installation of systems, structures, and components (SSCs) provided by Project W-521 will satisfy Level 2 and operational requirements, and to describe the T&E program to be implemented during the various project phases. This TEP establishes a sequence of test and evaluation activities to provide confidence that all required T&E activities will be accomplished successfully to support a smooth and timely turnover of completed SSCs to the River Protection Project (RPP) operations organization. In addition, organizational responsibilities for managing and performing the T&E activities are outlined. This TEP was prepared in accordance with the guidance and requirements of the RPP Test and Evaluation Management Plan. The Project W-521 TEP documents the process that will show that the SSCs are (1) compliant with the requirements of the Level 2 Specifications, (2) constructed in accordance with approved design drawings and procurement/construction specifications, (3) installed properly and appropriately integrated into the existing systems, and (4) will operate adequately on turnover to the customer.
Date: September 11, 2000
Creator: MAY, T.H.
Partner: UNT Libraries Government Documents Department

Corrosion Test Results for Inconel 600 vs Inconel-Stainless UG Bellows

Description: The Conversion Project (CP) of the Molten Salt Reactor Experiment at Oak Ridge National Laboratory (ORNL) involves converting slightly less than 40 kg of {sup 233}U to a stable form for safe storage. The operation is performed within a few vessels interconnected by valves and 1/2-in. metal tubing. During this conversion, a particularly toxic and corrosive by-product is formed, namely aqueous hydrofluoric acid (HF). The production of HF is a result of the hydrolysis of UF{sub 6} and subsequent steam treatments of UO{sub 2}F{sub 2}. For each mole of UF{sub 6} converted, 6 mol of HF are produced. The HF that forms during conversion combines with water to produce approximately 1.5 L of 33 wt % HF. As this mixture is transferred within the process system, the tubing and valves are exposed to high concentrations of HF in liquid and vapor form. Of particular concern in the system are the almost 30 valves that have the potential for exposure to HF. For these valves, a vendor-supplied UG valve was installed. UG valves consist of an Alloy 400 (Monel) body and stem tip and Alloy 600 (Inconel) bellows. These valves have been used under experimental conditions that simulate the CP. It has been established that they have a finite life when exposed to a HF and air environment. Most failures were seen around the flange at the bottom of the bellows, and it was suspected that this flange and the weld material were not Inconel. In December 2001, the vendor confirmed that this flange was not Inconel but instead was stainless steel 316. After discussions between the vendor and ORNL staff involved with the CP effort, it was decided that the entire wetted area of the bellows would be fabricated from Alloy 600. In March 2002, four newly fabricated bellows assemblies ...
Date: September 11, 2002
Creator: Osborne, P.E.
Partner: UNT Libraries Government Documents Department

Investigation of passive vibration damping methods for the Advanced Photon Source storage ring girders.

Description: Beam stability is a major concern for the operation of the APS. One of the many contributing factors to electron-beam instability is mechanical vibration of the accelerator components especially the focusing magnets. The electron beam should be stable to 5% of its rms size to maintain the specified photon beam stability. The APS uses steel girders to support the conventional magnets and vacuum chambers in the storage ring (SR). Three pedestal and jack assemblies support the girders. Damping pads are presently installed between the pedestals and the jacks. These damping pads have been shown to be very effective in reducing the fundamental girder-vibration mode. The horizontal vibration levels of the SR quadrupole magnets are presently within specification at between two and four times the ground motion, i.e., 50-100 nm rms (4-50 Hz). Future improvements to the APS beam quality would require a further reduction in girder vibration. Several options for reducing the vibration of the girders and magnets are discussed, and the measurement results are presented.
Date: September 11, 2002
Creator: Sharma, S. & Doose, C.
Partner: UNT Libraries Government Documents Department

Hanford Site liquid waste acceptance criteria

Description: This document provides the waste acceptance criteria for liquid waste managed by Waste Management Federal Services of Hanford, Inc. (WMH). These waste acceptance criteria address the various requirements to operate a facility in compliance with applicable environmental, safety, and operational requirements. This document also addresses the sitewide miscellaneous streams program.
Date: September 11, 1999
Creator: LUECK, K.J.
Partner: UNT Libraries Government Documents Department

Electron Equivalents REDOX Model for High Level Waste Vitrification

Description: Control of the REDuction/OXidation (REDOX) equilibrium in high level waste (HLW) glass melters is critical in order to eliminate the formation of metallic species from overly reduced melts while minimizing foaming from overly oxidized melts. To date, formates, nitrates, and manganic species in the melter feeds going to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) have been the major parameters influencing melt REDOX. The sludge being processed for inclusion in the next DWPF Sludge Batch contains several organic components that are considered non-typical of DWPF sludge to date, e.g. oxalates and coal. A mechanistic REDOX model was developed to balance any reductants and any oxidants for any HLW melter feed. The model is represented by the number of electrons gained during reduction of an oxidant or lost during oxidation of a reductant. The overall relationship between the REDOX ratio of the final glass and the melter feed is given in terms of the transfer of molar Electron Equivalents.
Date: September 11, 2003
Creator: Jantzen, C.M.
Partner: UNT Libraries Government Documents Department

ENSO Simulation in CGCMs and the Associated Errors in Atmospheric Response

Description: Tropical Pacific variability, and specifically the simulation of ENSO in coupled ocean-atmosphere general circulation models (CGCMs) has previously been assessed in many studies (McCreary and Anderson [1991], Neelin et al. [1992], Mechoso et al. [1995], Latif et al. [2000], and Davey et al. [2000]). These studies have concentrated on SST variations in the tropical Pacific, and discussions of the atmospheric response have been limited to east-west movements of the convergence zone. In this paper we discuss the large-scale atmospheric response to simulated ENSO events. Control simulations from 17 global CGCMs from CMIP (Meehl et al. [2000]) are studied. The web site http:// www-pcmdi.llnl.gov/cmip/modeldoc provides documentation of the configurations of the models.
Date: September 11, 2000
Creator: AchutaRao, K. & Sperber, K.R.
Partner: UNT Libraries Government Documents Department

Conceptual design for a neutron imaging system for thick target analysis operating in the 10-15 MeV energy range

Description: Fast neutron imaging offers the potential to be a powerful non- destructive inspection tool for evaluating the integrity of thick sealed targets. This is particularly true in cases where one is interested in detecting voids, cracks or other defects in low-Z materials (e.g. plastics, ceramics, salts, etc.) which are shielded by thick, high-Z parts. In this paper we present the conceptual design for a neutron imaging system for use in the 10 - 15 MeV energy range and discuss potential applications in the area of nuclear stockpile steward- ship. The background of this project, currently under development at LLNL, will be outlined and computer simulations will be presented which predict system performance. Efforts to assess technical risks involved in the development of the system will be discussed and the results of a recent experiment designed to evaluate background radiation levels will also be presented.
Date: September 11, 1996
Creator: Dietrich, F.; Hall, J. & Logan, C.
Partner: UNT Libraries Government Documents Department

Safety Evaluation for Packaging for onsite Transfer of plutonium recycle test reactor ion exchange columns

Description: The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the use of three U.S. Department of Transportation (DOT) 7A, Type A metal boxes (Capital Industries Part No. S 0600-0600-1080- 0104) to package 12 Plutonium Recycle Test Reactor (PRTR) ion exchange columns as low-level waste (LLW). The packages will be transferred from the 309 Building in the 300 Area to low level waste burial in the 200 West Area. Revision 1 of WHC-SD-TP-SEP-035 (per ECN No. 621467) documents that the boxes containing ion exchange columns and grout will maintain the payload under normal conditions of transport if transferred without the box lids
Date: September 11, 1995
Creator: Smith, R. J.
Partner: UNT Libraries Government Documents Department

CSER 97-004: PFP production denitration calciner system

Description: The plutonium stabilization program at the Plutonium Finishing Plant (PFP) includes conversion of acidic plutonium nitrate solution into plutonium oxide. Conversion is facilitated through use of a vertical calciner installed in Glovebox HC-23OC-2, which is located in RM 230C of this facility. This evaluation supports the Criticality Prevention Specification for the calcining process inside this glovebox. As the product of the calciner is a high density plutonium oxide, a number of limits are required to insure criticality safety. The containers allowed are product receiver vessels and 0.5 C slip lid cans and polyjars. The limits allow for two ``unit masses`` of 2 V total volume each, separated by a distance of at least 25.4 cm (10 in.). This evaluation allows for operation of the calciner for product densities not in excess of 5.5 g Pu/cm{sup 3}.
Date: September 11, 1997
Creator: Hillesland, K.E.
Partner: UNT Libraries Government Documents Department

Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

Description: The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.
Date: September 11, 1996
Partner: UNT Libraries Government Documents Department

X-Ray imager power source on distribution trailers

Description: This Acceptance for Beneficial Use documents the work completed on the addition of an X-ray cable reel on distribution trailer HO-64-3533 for core sampling equipment. Work and documentation remaining to be completed is identified.
Date: September 11, 1996
Creator: Johns, B.R.
Partner: UNT Libraries Government Documents Department

Development of high power radio frequency components for fusion plasma heating. Final report, Revision 3

Description: The purpose of this CRADA was to develop advanced microwave heating systems for both ion cyclotron heating and electron cyclotron heating for magnetic fusion reactors. This involved low-frequency (UHF), high-power (millimeter-wave) microwave components, such as antennas, windows, and matching elements. This CRADA also involved developing conceptual designs for new microwave sources. General Atomics built and tested the distributed cooled window and provided LLNL with transmission and reflection test data in order to then benchmark the EM computer codes. The combline antenna built and analyzed by LLNL was based on a GA design. GA provided LLNL with a number of niobium plates for hot pressing and provided the necessary guidance to allow successful bonding. GA representatives were on site at LLNL on numerous occasions to consult and give guidance on the ferroelectric tuner, combline antenna and distributed window analysis.
Date: September 11, 1997
Partner: UNT Libraries Government Documents Department

The Role of Federal Gasoline Excise Taxes in Public Policy

Description: This report examines the effects of the federal excise tax on gasoline and analyzes the positive and negative effects of the tax. The report also evaluates the incentive structure that a higher gasoline tax would likely create, and examines a revised version of the tax, a variable gasoline tax.
Date: September 11, 2009
Creator: Pirog, Robert
Partner: UNT Libraries Government Documents Department