3 Matching Results

Search Results

Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Description: The modification of the band edge or emission energy of semiconductor quantum well light emitters due to image charge induced phenomenon is an emerging field of study. This effect observed in quantum well light emitters is critical for all metal-optics based light emitters including plasmonics, or nanometallic electrode based light emitters. This dissertation presents, for the first time, a systematic study of the image charge effect on semiconductor–metal systems. the necessity of introducing the image charge interactions is demonstrated by experiments and mathematical methods for semiconductor-metal image charge interactions are introduced and developed.
Date: May 2012
Creator: Gryczynski, Karol Grzegorz
Partner: UNT Libraries

Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Description: With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an efort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. a dielectric-metal-¬dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. an equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a Kronig-Penny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. in the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the ...
Date: May 2012
Creator: Nagaraj, Nagaraj
Partner: UNT Libraries

Fabrication of Photonic Crystal Templates through Holographic Lithography and Study of their Optical and Plasmonic Properties in Aluminium Doped Zinc Oxide

Description: This dissertation focuses on two aspects of integrating near-infrared plasmonics with electronics with the intent of developing the platform for future photonics. The first aspect focuses on fabrication by introducing and developing a simple, single reflective optical element capable of high–throughput, large scale fabrication of micro- and nano-sized structure templates using holographic lithography. This reflective optical element is then utilized to show proof of concept in fabricating three dimensional structures in negative photoresists as well as tuning subwavelength features in two dimensional compound lattices for the fabrication of dimer and trimer antenna templates. The second aspect focuses on the study of aluminum zinc oxide (AZO), which belongs to recently popularized material class of transparent conducting oxides, capable of tunable plasmonic capabilities in the near-IR regime. Holographic lithography is used to pattern an AZO film with a square lattice array that are shown to form standing wave resonances at the interface of the AZO and the substrate. To demonstrate device level integration the final experiment utilizes AZO patterned gratings and measures the variation of diffraction efficiency as a negative bias is applied to change the AZO optical properties. Additionally efforts to understand the behavior of these structures through optical measurements is complemented with finite difference time domain simulations.
Date: August 2017
Creator: George, David Ray
Partner: UNT Libraries