Search Results

Implementation of Scalable Secure Multicasting

Description: A large number of applications like multi-player games, video conferencing, chat groups and network management are presently based on multicast communication. As the group communication model is being deployed for mainstream use, it is critical to provide security mechanisms that facilitate confidentiality, authenticity and integrity in group communications. Providing security in multicast communication requires addressing the problem of scalability in group key distribution. Scalability is a concern in group communication due to group membership dynamics. Joining and leaving of members requires the distribution of a new session key to all the existing members of the group. The two approaches to key management namely centralized and distributed approaches are reviewed. A hybrid solution is then provided, which represents a improved scalable and robust approach for a secure multicast framework. This framework then is implemented in an example application of a multicast news service.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2002
Creator: Vellanki, Ramakrishnaprasad
Partner: UNT Libraries

Secret Key Agreement without Public-Key Cryptography

Description: Secure communication is the primary challenge in today's information network. In this project an efficient secret key agreement protocol is described and analyzed along with the other existing protocols. We focus primarily on Leighton and Micali's secret-key agreement without the use of public-key encryption techniques. The Leighton-Micali protocol is extremely efficient when implemented in software and has significant advantages over existing systems like Kerberos. In this method the secret keys are agreed upon using a trusted third party known as the trusted agent. The trusted agent generates the keys and writes them to a public directory before it goes offline. The communicating entities can retrieve the keys either from the online trusted agent or from the public directory service and agree upon a symmetric-key without any public-key procedures. The principal advantage of this method is that the user verifies the authenticity of the trusted agent before using the keys generated by it. The Leighton-Micali scheme is not vulnerable to the present day attacks like fabrication, modification or denial of service etc. The Leighton-Micali protocol can be employed in real-time systems like smart cards. In addition to the security properties and the simplicity of the protocol, our experiments show that in practice the time to generate keys is very low, and is faster than the Diffie-Hellman key exchange for the same problem.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2003
Creator: Surapaneni, Smitha
Partner: UNT Libraries