Search Results

The Torsional and Bending Deflection of Full-Scale Duralumin Propeller Blades under Normal Operating Conditions, Special Report

Description: The torsional deflection of the blades of three full-scale duralumin propellers operating under various loading conditions was measured by a light-beam method. Angular bending deflections were also obtained as an incidental part of the study. The deflection measurements showed that the usual present-day type of propeller blades twisted but a negligible amount under ordinary flight conditions. A maximum deflection of about 1/10th of a degree was found at V/nD of 0.3 and a smaller deflection at higher values of V/nD for the station at 0.70 radius. These deflections are much smaller than would be expected from earlier tests, but the light-beam method is considered to be much more accurate than the direct-reading transit method used in the previous tests.
Date: March 1, 1938
Creator: Hartman, Edwin P. & Biermann, David
Partner: UNT Libraries Government Documents Department

The Transition Phase in the Take-Off of an Airplane, Special Report

Description: An investigation was undertaken to determine the character and importance of the transition phase between the ground run and steady climb in the takeoff of an airplane and the effects of various factors on this phase and on the airborne part of the takeoff as a whole. The information was obtained from a series of step-by-step integrations, which defined the motion of the airplane during the transition and which were based on data derived from actual takeoff tests of a Verville AT airplane. Both normal and zoom takeoffs under several loading and takeoff speed conditions were considered. The effects of a moderate wind with a corresponding wind gradient and the effect of proximity of the ground were also investigated. The results show that, for normal takeoffs, the best transition was realized at the lowest possible takeoff speed. Moreover, this speed gave the shortest overall takeoff distance for normal takeoffs. Zoom takeoffs required a shorter overall takeoff run than normal takeoffs, particularly with a heavy landing, if the obstacle to be cleared was sufficiently high (greater than 50 feet); no advantage was indicated to the airplane with a light loading if the height to be cleared was less. The error resulting from the neglect of the transition in the calculation of the airborne distance of takeoff was found to vary from 4% with the heaviest loading considered to -4% with the lightest loading for normal takeoffs over a 100-ft obstacle; the percentage error was twice as great for a 50-foot obstacle. For zoom takeoffs the error attained much greater values. The average wind gradient corresponding to a 5-mile-per-hour surface wind reduced the airborne distance required to clear a 50-foot obstacle by about 9% with the lightest loading and 16% with the heaviest loading; for both cases. The overall reduction due to ...
Date: December 1, 1937
Creator: Wetmore, J. W.
Partner: UNT Libraries Government Documents Department

Tank Tests of the Effect of Rivet Heads, etc., on the Water Performance of a Seaplane Float, Special Report

Description: A 1/3.5 full-size model of the Mark V float of the Bureau of Aeronautics, Navy Department, was tested in the NACA tank both with smooth painted bottom surfaces and with roundhead rivets, plate laps, and keel plates fitted to simulate the actual bottom of a metal float. The augmentation in water resistance due to the added roughness was found to be from 10-12% at the hum speed and from 12-14% at high speeds. The effect of the roughness of the afterbody was found to be negligible except at high trims. The model data were extrapolated to full size by the usual method which assumes the forces to vary according to Froude's law, and in the case of the smooth model by a method of separation that takes into account the effect of scale on the frictional resistance. It was concluded that the effect of rivet heads on the takeoff performance of a relatively high-powered float seaplane is of little consequence but that it may be of greater importance in the case of more moderately powered flying boats.
Date: June 4, 1936
Creator: Parkinson, J. B. & Robertson, J. B., Jr.
Partner: UNT Libraries Government Documents Department

Stability of Castering Wheels for Aircraft Landing Gears, Special Report

Description: In many installations of castering rubber-tired wheels there is a tendency for the wheel to oscillate violently about the spindle axis. This phenomenon, popularly called 'shimmy,' has occurred in some airplane tail wheels and has been corrected in two ways: first by the application of friction in the spindles of the tail wheels; and, second, by locking the wheels while taxiing at high speeds. Shimmy is common with the large wheels used as nose wheels in tricycle landing gears and, since it is impossible to lock the wheels, friction in the nose-wheel spindle has been the sole means of correction. Because the nose wheel is larger than the conventional tail wheel and usually carries a greater load, the larger amounts of spindle friction necessary to prevent shimmy are objectionable. the present paper presents a theoretical and experimental study of the problem of the stability of castering wheels for airplane landing gears. On the basis of simplified assumptions induced from experimental observations, a theoretical study has been made of the shimmy of castering wheels. The theory is based on the discovery of a phenomenon called 'kinematic shimmy' and is compared quantitatively with the results of model experiments. Experimental checks, using a model having low-pressure tires, are reported and the applicability of the results to full scale is discussed. Theoretical methods of estimating the spindle viscous damping and spindle solid friction necessary to avoid shimmy - lateral freedom - is introduced.
Date: September 1, 1937
Creator: Kantrowitz, Arthur
Partner: UNT Libraries Government Documents Department

Pressure Distribution on the Fuselage of a Midwing Airplane Model at High Speeds

Description: The pressure distribution on the fuselage of a midwing airplane model was measured in the NACA 8-foot high speed wind tunnel at speeds from 140 to 440 miles per hour for lift coefficients ranging from -0.2 to 1.0. The primary purpose of the tests was to provide data showing the air pressures on various parts of the fuselage for use in structural design. The data may also be used for the design of scoops and vents. The results show that the highest negative pressures occurred near the wing and were more dependent on the wing than on the fuselage. At high speeds, the magnitude of the pressure coefficients as predicted from pressure coefficients determined experimentally at low speeds by application of the theoretical factor 1/(square root)1-M(exp 2) (where M is the ratio of the air speed to the speed of sound in air) may misrepresent the actual conditions. At the points where the maximum negative pressures ocurred, however, the variation of the pressure coefficients was in good agreement with the theoretical factor, indicating that this factor may afford satisfactory predictions of critical speed, at least for fuselages similar to the shape tested.
Date: November 1, 1939
Creator: Delano, James B.
Partner: UNT Libraries Government Documents Department

Profile-Drag Investigation of an Airplane Wing Equipped with Rubber Inflatable De-Icer

Description: The National Advisory Committee for Aeronautics has made profile-drag measurements in flight of a wing which was equipped with a rubber inflatable de-icer and to which various stimulated ice formations were attached. Tuft observations at the stalling speed of the wing with the various drag conditions were made in order to determine the influence on the maximum lift coefficient. The de-icer installation caused an increase of from 10-20% in the profile drag of the plain wing and reduced CL(sub max) about 6%. Simulated ice, when confined to the leading-edge region of the de-icer, had no measurable influence upon the profile drag at the cruising speed. This ice condition, however, reduced the value of CL(sub max) to about three-fourths that of the plain wing. Simulated ice in the form of a ridge along the upper and lower de-icer cap-strips increased the profile drag by about 360% at cruising speed. This condition reduced the CL(sub max) to approximately one-half that of the plain wing value.
Date: December 1, 1939
Creator: Rodert, Lewis A. & Jones, Alun R.
Partner: UNT Libraries Government Documents Department

Propeller-Design Problems of High-Speed Airplanes, Special Report

Description: It is shown that on the basis of existing high-speed airfoil data, propeller efficiencies appreciably in excess of 40% do not appear possible at speeds above 500 miles per hour at 20,000 feet. The assumption that present propeller-blade thicknesses cannot be reduced radically, is implied. Until the reliability and applicability of the airfoil data are established, this conclusion must not be regarded as infallible. Dive tests with airplanes equipped with thrust meters and torque meters are proposed to provide an urgently needed check. The design of high-speed propellers is dictated wholly by compressibility considerations. The blade width, thickness, and pitch distribution; also the airfoil sections, the lift coefficient, the propeller diameter, and rpm must all be adjusted if reasonable efficiencies are to be maintained at airplane speeds that are now being approached. Research is urgently needed on: 1) airfoils at subsonic, sonic, and supersonic speeds; 2) propellers at high forward speeds in wind tunnels; 3)propellers in free flight at high speeds; and 4) jet propulsion and related devices. The breakdown of propeller efficiency indicated by airfoil data, should serve as an incentive for accelerated research on jet propulsion. This device may extend the attainable speed of current airplanes to the neighborhood of 550 miles per hour at 20,000 feet.
Date: April 1, 1941
Creator: Dickinson, H. B.
Partner: UNT Libraries Government Documents Department

Radiator Design and Installation

Description: The fundamental principles of fluid flow, pressure losses, and heat transfer have been presented and analyzed for the case of a smooth tube with fully developed turbulent flow. These equations apply to tubes with large length-diameter ratios where the f1ow is at a high Reynolds Number. The error introduced by using these equations increases as the magnitude of the tube length and the air-flow Reynolds Number approaches the values encountered in modern radiator designs. Accordingly, heat-transfer tests on radiator sections were made and the results are presented in nondimensional form to facilitate their use and for comparison with other heat-transfer data. In addition, pressure losses were measured along smooth tubes of circular, square, and rectangular cross section and the results were also correlated and are presented in nondimensional form. The problem of a radiator design for a particular installation is solved, the experimental heat-transfer and pressure-loss data being used, on a basis of power chargeable to the radiator for form drag, for propelling the weight, and for forcing the air through the radiator. The case of an installation within a wing or an engine nacelle is considered. An illustration of radiator design is carried through for an arbitrary set of conditions. Sufficient detail is given to enable the reader to reproduce the analysis for any given case.
Date: May 1, 1939
Creator: Brevoort, M.J. & Leifer, M.
Partner: UNT Libraries Government Documents Department

Relative Efficiencies and Design Charts for Various Engine-Propeller Combinations, Special Report

Description: The relative efficiencies of various engine-propeller combinations were the subject of a study that covered the important flight conditions, particularly the take-off. Design charts that graphically correlate the various propeller parameters were prepared to facilitate the solution of problems and also to c1arify the conception of the relationships of the various engine-propeller design factors. It is shown that, among the many methods for improving the take-off thrust, the use of high-pitch, large-diameter controllable propellers turning at low rotational speeds is probably the most generally promising. With such a combination the take-off thrust may be further increased, at the expense of a small loss in cruising efficiency, by compromise designs wherein the pitch setting is slightly reduced and the diameter is further increased. The degree of compromise necessary to accomplish the maximum possible take-off improvement depends on such design factors as overspeeding and overboosting at take-off as well as depending on the design altitude. Both overspeeding and designing for altitude operation have the same effect on the take-off thrust as compromising in that the propulsive efficiency is increased thereby; boosting the engine, however, has the reverse effect on the propulsive efficiency, although the brake horsepower is increased.
Date: September 1, 1936
Creator: Biermann, David
Partner: UNT Libraries Government Documents Department

Resume of Present Data on Load Distribution on Slots and Flaps, Special Report

Description: This report covers a study of the generally available data on load distribution on slots and flaps. The study was made by the National Advisory Committee for Aeronautics at the request of the Material Division, Army Air Corps to furnish information applicable to design criteria for slots and flaps of various types. The data are presented in three main sections: slots (Handley page type), auxiliary airfoils (fixed), and flaps.
Date: April 1, 1934
Creator: Wenzinger, Carl J.
Partner: UNT Libraries Government Documents Department

The Effects of Aerodynamic Heating on Ice Formations on Airplane Propellers

Description: An investigation has been made of the effect of aerodynamic heating on propeller-blade temperatures. The blade temperature rise resulting from aerodynamic heating was measured and the relation between the resulting blade temperatures and the outer limit of the iced-over region was examined. It was found that the outermost station at which ice formed on a propeller blade was determined by the blade temperature rise resulting from the aerodynamic heating at that point.
Date: August 1, 1940
Creator: Rodert, Lewis A.
Partner: UNT Libraries Government Documents Department

An Electrical-Type Indicating Fuel Flowmeter

Description: An electrical-type meter has been developed for measuring mass rates of flow of gasoline or other nonconducting fluids. Its temperature dependence is small over a large range and it has no known vibrational or viscosity errors. The maximum temperature rise is less than 5 C. The rates of flow, measurable within 1% with the present instrument, are approximately 100 to 1,000 or more pounds of gasoline per hour when a potentiometer is used, or 100 to 300 pounds per hour when a deflection-type meter is used.
Date: September 1, 1939
Creator: Tozier, Robert E.
Partner: UNT Libraries Government Documents Department

Drag of Several Gunner's Enclosures at High Speeds, Special Report

Description: The drag of several types of gunner's turrets, windshields, blisters, and other protuberances, including projecting guns, was investigated at speeds from 75 to 440 miles per hour in the NACA 8-foot high-speed wind tunnel. The various gunner's enclosures were represented by 1/10 and 1/7 full-size models on a midwing-fuselage combination representative of bomber types. Most of the usual types of retractable turrets are very poor aerodynamically; they caused wind drag increments, dependent upon the size of the turret relative to the fuselage and upon the speed, up to twice the drag of the fuselage alone. A large streamline blister sufficient to enclose completely one type of rotating cylindrical turret caused a drag increment of approximately one-half that of the turret and at the same time provided space adequate for two gunners rather than for one gunner. A large portion of the drag increments for some types of turret appeared to be due to adverse effects on the fuselage flow caused by the turret rather than by the direct drag of the turret.
Date: July 1, 1941
Creator: Stack, John & Moberg, Richard J.
Partner: UNT Libraries Government Documents Department

The Effect of Lateral Inclination of the Thrust Axis and of Sweepback of the Leading Edge of the Wing on Propulsive and Net Efficiencies of a Wing-Nacelle-Propeller Combination

Description: This report describes and gives the results of tests made to determine the effect of lateral inclination of the propeller thrust axis to the direction of flight. A wing-nacelle-propeller combination with the nacelle axis located successively parallel to and at 15 degrees to the perpendicular to the leading edge of a wing was tested with the combination at several angles of yaw. Tests of the wing alone at the same angles of yaw were also made. The data are presented in the usual graphic form. An increase in propulsive efficiency with increase in angle of the thrust axis was found. The change in net efficiency, found by charging the whole nacelle drag to the power unit, was negligible, however, within the range of the tests.
Date: April 1, 1935
Creator: Wood, Donald H. & Windler, Ray
Partner: UNT Libraries Government Documents Department

Comparison of Three Exit-Area Control Devices on an N.A.C.A. Cowling, Special Report

Description: Adjustable cowling flaps, an adjustable-length cowling skirt, and a bottom opening with adjustable flap were tested as means of controlling the rate of cooling-air flow through an air-cooled radial-engine cowling. The devices were tested in the NACA 20-foot tunnel on a model wing-nacelle-propeller combination, through an airspeed range of 20 to 80 miles per hour, and with the propeller blade angle set 23 degrees at 0.75 of the tip radius. The resistance of the engine to air flow through the cowling was simulated by a perforated plate. The results indicated that the adjustable cowling flap and the bottom opening with adjustable flap were about equally effective on the basis of pressure drop obtainable and that both were more effective means of increasing the pressure drop through the cowling than the adjustable-length skirt. At conditions of equal cooling-air flow, the net efficiency obtained with the adjustable cowling flaps and the adjustable-length cowling skirt was about 1% greater than the net efficiency obtained with the bottom opening with adjustable flap.
Date: May 1, 1940
Creator: McHugh, James G.
Partner: UNT Libraries Government Documents Department

Critical Compressive Stress for Flat Rectangular Plates Supported Along all Edges and Elastically Restrained Against Rotation Along the Unloaded Edges, Special Report 189

Description: A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in flat rectangular plates supported along all edges and, in addition, elastically restrained against rotation along the unloaded edges. The mathematical derivations of the formulas required in the construction of the chart are given.
Date: May 1, 1941
Creator: Lundquist, Eugene E. & Stowell, Eldbridge Z.
Partner: UNT Libraries Government Documents Department

Critical Compressive Stress for Outstanding Flanges

Description: A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in outstanding flanges. These flanges are flat rectangular plates supported along the Loaded edges, supported and elastically restrained along one unloaded edge, and free along the other unloaded edge. The mathematical derivations of the formulas required for the construction of the chart are given.
Date: April 1, 1941
Creator: Lundquist, Eugene E. & Stowell, Elbridge Z.
Partner: UNT Libraries Government Documents Department

Preliminary Full-Scale Wind-Tunnel Investigation of Wing Ducts for Radiators, Special Report

Description: Wing ducts for liquid-cooled engine radiators have been investigated in the N.A.C.A. full-scale wind tunnel on a large model airplane. The tests were made to determine the relative merits of several types of duct and radiator installations for an airplane of a particular design. In the test program the principal duct dimensions were systematically varied, and the results are therefore somewhat applicable to the general problems of wing duct design, although they should be considered as preliminary and only indicative of the inherent possibilities.
Date: March 1, 1938
Creator: Silverstein, Abe & Nickle, F. R.
Partner: UNT Libraries Government Documents Department

Wind-Tunnel Investigation of Air Inlet and Outlet Openings for Aircraft, Special Report

Description: An investigation was made in the NACA 5-foot vertical wind tunnel of a large variety of duct inlets and outlets to obtain information relative to their design for the cooling or the ventilation systems on aircraft. Most of the tests were of openings in a flat plate but, in order to determine the best locations and the effects of interference, a few tests were made of openings in an airfoil. The best inlet location for a system not including a blower was found to be at the forward stagnation point; for one including a blower, the best location was found to be in the region of lowest total head, probably in the boundary layer near the trailing edge. Design recommendations are given, and it is shown that correct design demands a knowledge of the external flow and of the internal requirements in addition to that obtained from the results of the wind tunnel tests.
Date: October 1, 1938
Creator: Rogallo, Francis M. & Gauvain, William E.
Partner: UNT Libraries Government Documents Department

Preliminary Model Tests of a Wing-Duct Cooling System for Radial Engines, Special Report

Description: Wind-tunnel tests were conducted on a model wing-nacelle combination to determine the practicability of cooling radial engines by forcing the cooling air into wing-duct entrances located in the propeller slipstream, passing the air through the engine baffles from rear to front, and ejecting the air through an annular slot near the front of the nacelle. The tests, which were of a preliminary nature, were made on a 5-foot-chord wing and a 20-inch-diameter nacelle. A 3-blade, 4-foot-diameter propeller was used. The tests indicated that this method of cooling and cowling radial engines is entirely practicable providing the wing of the prospective airplane is sufficiently thick to accommodate efficient entrance ducts , The drag of the cowlings tested was definitely less than for the conventional N.A.C.A. cowling, and the pressure available at low air speed corresponding to operation on the ground and at low flying speeds was apparently sufficient for cooling most present-day radial engines.
Date: February 1, 1939
Creator: Biermann, David & Valentine, E. Floyd
Partner: UNT Libraries Government Documents Department

Preliminary Wind-Tunnel and Flight Tests of a Balanced Split Flap, Special Report

Description: One disadvantage that has been apparent in the operation of split flaps as used to date is the time and effort required to operate them. In this communication an investigation is being made of possible means for balancing them aerodynamically to make their operation easier. Several arrangements have been tested in the 7 by 210 foot wind tunnel, and the results of the wind-tunnel tests as well as preliminary flight tests on one of the more promising forms are given in this paper.
Date: August 1, 1934
Creator: Weick, Fred E. & Thompson, Floyd L.
Partner: UNT Libraries Government Documents Department

Wind-Tunnel Investigation of Rectangular Air-Duct Entrances in the Leading Edge of an NACA 23018 Wing, Special Report

Description: A preliminary investigation of a number of duct entrances of rectangular shape installed in the leading edge of a wing was conducted in the NACA 20-foot tunnel to determine the external drag, the available pressure, the critical Mach numbers, and the effect on the maximum lift. The results showed that the most satisfactory entrances, which had practically no effect on the wing characteristics, had their lips approximately in the vertical plane of the leading edge of the wing. This requirement necessitated extending the lips outside the wing contour for all except the small entrances. Full dynamic pressure was found to be available over a fairly wide range of angle of attack. The critical Mach number for a small entrance was calculated to be as high as that for the plain wing but was slightly lower for the larger entrances tested.
Date: September 1, 1940
Creator: Biermann, David & McLellan, Charles H.
Partner: UNT Libraries Government Documents Department

Some Notes on the Determination of the Stick-Free Neutral Point from Wind-Tunnel Data

Description: Two graphical methods are presented for determining the stick-free neutral point, and they are extensions of the methods commonly used to determine the stick-free neutral point. A mathematical formula for computing the stick-free neutral point is also given. These methods may be applied to determine approximately the increase in tail size necessary to shift the neutral point (stick fixed or free) to any desired location on an airplane having inadequate longitudinal stability.
Date: February 1, 1944
Creator: Schuldenfrei, Marvin
Partner: UNT Libraries Government Documents Department