Search Results

Influence of parental swimming stamina on the cardiac and metabolic performance of larval zebrafish (Danio rerio).

Description: Superior swimming stamina in adult fish is presumably passed on to their offspring, but the ontogeny of the appearance of superior stamina and the requisite enhanced cardio-respiratory support for locomotion in larval fishes has not been determined. Is the expression of the suite of parental traits enabling superior swimming stamina in their offspring dependent upon their achieving juvenile/adult morphology, or does it appear earlier in their larvae? To answer this, adults were classified into three groups based on swimming stamina, followed by measurement of length, mass, and width. Larval offspring from the two parental groups -high stamina larvae (HSL) and low stamina larvae (LSL)- were reared at 27°C in aerated water (21% O2). Routine and active heart rate, routine and active mass specific oxygen consumption were recorded through 21dpf, and cost of transport (COT) and factorial aerobic scope were derived from oxygen consumption measurements. Routine heart rate at 2dpf of LSL was 164 ± 1 b·min-1, compared to only 125 ± 2 b·min-1 for HSL. Routine heart rate subsequently peaked at 203 ± 1 b·min-1 at 5dpf in the HSL group, compared to 207 ± 1 b·min-1, at 4dpf in the LSP larvae. Active heart rate at 5 dpf of LSL was 218 ± 2 b·min-1 compared to 216 ± 2 b·min-1 for HSL. Active heart rate increased slightly to 227 ± 2 b·min-1 for LSL before decreasing again, while active heart rate remained relatively constant for HSL. Routine O2 consumption at 2dpf of HSL was 0.09 μmol·mg-1·hr-1, compared to 0.03 μmol·mg-1·hr-1 in LSL. Routine O2 consumption subsequently peaked at 0.70 μmol·mg-1·hr-1 at 9dpf in the HSL, compared to 0.71 μmol·mg-1·hr-1, at 9dpf in the LSL. These values dramatically decreased before leveling off at around 0.20 μmol·mg-1·hr-1 and 0.15 μmol·mg-1·h-1, respectively. Active O2 consumption at 5dpf for HSL was 0.38 ...
Date: May 2007
Creator: Gore, Matthew R.
Partner: UNT Libraries

Zebrafish Von Willebrand Factor

Description: In humans, von Willebrand factor (vWF) is a key component in hemostasis and acts as a 'cellular adhesive' by letting the circulating platelets bind to exposed subendothelium. It also acts as a carrier and stabilizer of factor VIII (FVIII). A dysfunction or reduction of vWF leads to von Willebrand disease (vWD), resulting in bleeding phenotype which affects 1% of the population. Currently there are a variety of animal models used for the study of vWF and vWD; however, they do not possess the advantages found in zebrafish. Therefore, we set out to establish zebrafish as a model for the investigation of vWF and vWD through the use of bioinformatics and various molecular techniques. Using bioinformatics we found that the vWF gene is located on chromosome 18, that the GPIb? protein sequence is conserved. Confirmation of vWF production was shown by means of immunostaining and by RT-PCR, in thrombocytes as well as in veins and arteries. Evidence of vWF involvement in hemostasis and thrombosis was shown using MO and VMO technology to produce a vWD like phenotype, resulting in an increase in TTO and TTA, as well as a reduction in FVIII when blood was tested using the kPTT assay, coinciding with a decrease in vWF. Stimate treatment provided opposite results of MO and VMO, showing a decrease in TTO and TTA. Investigation of the role of microparticles in hemostasis and their interaction with vWF resulted in a conclusion that the GPIb? receptor should exist on MPs and that it may interact not only with zebrafish vWF but also with human UL-vWF. Agglutination of MPs in the presence of UL-vWF but in the absence of ristocetin and plasma, treatment with ADAMTS-13 abolishing the interaction between MPs and UL-vWF provided evidence that vWF interacts with MPs probably with the GPIb?. We also ...
Date: August 2012
Creator: Carrillo, Maira M.
Partner: UNT Libraries