24 Matching Results

Search Results

Micro-fabrication of a Mach-Zehnder interferometer combining laser direct writing and fountain pen micropatterning for chemical/biological sensing applications.

Description: This research lays the foundation of a highly simplified maskless micro-fabrication technique which involves incorporation of laser direct writing technique combined with fountain pen based micro-patterning method to fabricate polymer-based Mach-Zehnder interferometer sensor arrays' prototype for chemical/biological sensing applications. The research provides methodology that focuses on maskless technology, allowing the definition and modification of geometric patterns through the programming of computer software, in contrast to the conventional mask-based photolithographic approach, in which a photomask must be produced before the device is fabricated. The finished waveguide sensors are evaluated on the basis of their performance as general interferometers. The waveguide developed using the fountain pen-based micro-patterning system is compared with the waveguide developed using the current technique of spin coating method for patterning of upper cladding of the waveguide. The resulting output power profile of the waveguides is generated to confirm their functionality as general interferometers. The results obtained are used to confirm the functionality of the simplified micro-fabrication technique for fabricating integrated optical polymer-based sensors and sensor arrays for chemical/biological sensing applications.
Date: May 2009
Creator: Kallur, Ajay
Partner: UNT Libraries

Analysis of Pre-ictal and Non-Ictal EEG Activity: An EMOTIV and LabVIEW Approach

Description: In the past few years, the study of electrical activity in the brain and its interactions with the body has become popular among researchers. One of the hottest topics related to brain activity is the epileptic seizure prediction. Currently, there are several techniques on how to predict a seizure; however, most of the techniques found in research papers are just mathematical models and not system implementations. The seizure prediction approach proposed in this thesis paper is achieved using the EMOTIV Epoc+ headset, MATLAB, and LabVIEW as the analog and digital signal processing devices. In addition, this thesis project incorporates the use of the Hilbert Huang transform (HHT) method to obtain intrinsic mode functions (IMF) and instantaneous frequency components of the transform. From the IMFs, features as variation coefficient (VC) and fluctuation indexes (FI) are extracted to feed a support vector machine that classifies the EEG data as pre-ictal and non-ictal EEGs. Outstanding patterns in non-ictal and pre-ictal are observed and demonstrated by significant differences between both types of EEG signals. In other words, a classification of EEG signals according to a category can be achieved proving that an epileptic seizure prediction technology has a future in engineering and biotechnology fields.
Date: December 2016
Creator: Medina, Oscar F
Partner: UNT Libraries

Electronic Sound Analysis with Hardware System and Remote Internet Display

Description: Currently, standards from government agencies such as the National Institute for Occupation Safety and Health exist to aid in safeguarding individuals’ capacity for hearing, but only in factory settings in which large machines often produce loud levels of sound. Neglecting the fact that these preventative measures are only in place in the most limited of settings, no system currently exists to observe and report sound exposure levels in a manner timely or easily recognizable enough to adequately serve its purpose of hearing conservation. Musicians may also incur significant levels of risk for hearing loss in their day-to-day rehearsals and concerts, from high school marching bands to university wind bands. As a result, music school accrediting organizations such as the National Association of Schools of Music and even the European Union have begun taking steps meant to determine the risks associated with music. To meet these goals and improve upon current technologies, a system has been developed that electronically records sound levels utilizing modern hardware, increases the speed of reporting by transmitting data over computer networks and the Internet, and displays measures calculated from these data in a web browser for a highly viewable, user-friendly interface.
Date: August 2010
Creator: McCord, Cameron Forrest
Partner: UNT Libraries

A Real-Time Electronic Sound Analysis System with Graphical User Interface

Description: Noise-induced hearing loss is a serious problem common to musical environments. Current dosimetry technology is primarily designed for industrial environments and not suited for musical settings. At present, there are no government regulations that apply to the educational music environment as it relates to monitoring and prevention of hearing loss. Also, no system exists than can serve as a proactive tool in observation and reporting of sound exposure levels with the goal of hearing conservation. Newly proposed system takes a software based approach in designing a proactive dosimetry system that can assess the risk of sound noise exposure. It provides real-time feedback trough a graphical user interface that is capable of database storage for further study.
Date: August 2011
Creator: Brgulja, Amir
Partner: UNT Libraries

EEG Signal Analysis in Decision Making

Description: Decision making can be a complicated process involving perception of the present situation, past experience and knowledge necessary to foresee a better future. This cognitive process is one of the essential human ability that is required from everyday walk of life to making major life choices. Although it may seem ambiguous to translate such a primitive process into quantifiable science, the goal of this thesis is to break it down to signal processing and quantifying the thought process with prominence of EEG signal power variance. This paper will discuss the cognitive science, the signal processing of brain signals and how brain activity can be quantifiable through data analysis. An experiment is analyzed in this thesis to provide evidence that theta frequency band activity is associated with stress and stress is negatively correlated with concentration and problem solving, therefore hindering decision making skill. From the results of the experiment, it is seen that theta is negatively correlated to delta and beta frequency band activity, thus establishing the fact that stress affects internal focus while carrying out a task.
Date: May 2017
Creator: Salma, Nabila
Partner: UNT Libraries

Design and Validation of an Automated Multiunit Composting System.

Description: This thesis covers the design of an automated multiunit composting system (AMUCS) that was constructed to meet the experimental apparatus requirements of the ASTM D5338 standard. The design of the AMUCS is discussed in full detail and validated with two experiments. The first experiment was used to validate the operation of the AMUCS with a 15 day experiment. During this experiment visual observations were made to visually observe degradation. Thermal properties and stability tests were performed to quantify the effects of degradation on the polymer samples, and the carbon metabolized from the degradation of samples was measured. The second experiment used the AMUCS to determine the effect of synthetic clay nanofiller on the aerobic biodegradability behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate).
Date: December 2009
Creator: Pickens, Mark Everett
Partner: UNT Libraries

Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.

Description: Pulse oximeters are used in operating rooms and recovery rooms as a monitoring device for oxygen in the respiratory system of the patient. The advantage of pulse oximeters over other methods of oxygen monitoring is that they are easy to use and they are non-invasive, which means it is not necessary break the skin to extract blood for information to be obtained. The standard for the measurement of partial pressure of CO2 and O2 is an arterial blood gas analysis (ABG). However routine monitoring using this method on a continuous basis is impractical since it is slow, painful and invasive. Measuring carbon dioxide is critical to preventing ailments such as carbon dioxide poisoning or hypoxia. The problem is, currently there is no known effective non-invasive method for accurately measuring carbon dioxide in the body to properly assess the adequacy of ventilation. The objective of this study was to experimentally use spectroscopy in the visible spectrum and the principles of operation of a pulse oximeter to incorporate a method of non-invasive real-time carbon dioxide monitoring that is as quick and easy to use.
Date: December 2007
Creator: Marks, Damian
Partner: UNT Libraries

A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications

Description: This thesis presents a novel ZnO-hydrogel based fluorescent colloidal semiconductor nanomaterial system for potential bio-medical applications such as bio-imaging, cancer detection and therapy. The preparation of ZnO nanoparticles and their surface modification to make a biocompatible material with enhanced optical properties is discussed. High quality ZnO nanoparticles with UV band edge emission are prepared using gas evaporation method. Semiconductor materials including ZnO are insoluble in water. Since biological applications require water soluble nanomaterials, ZnO nanoparticles are first dispersed in water by ball milling method, and their aqueous stability and fluorescence properties are enhanced by incorporating them in bio-compatible poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The optical properties of ZnO-hydrogel colloidal dispersion versus ZnO-Water dispersion were analyzed. The optical characterization using photoluminescence spectroscopy indicates approximately 10 times enhancement of fluorescence in ZnO-hydrogel colloidal system compared to ZnO-water system. Ultrafast time resolved measurement demonstrates dominant exciton recombination process in ZnO-hydrogel system compared to ZnO-water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. The surface modification of ZnO nanoparticles by hydrogel induce more scattering centers per unit area of cross-section, and hence increase the luminescence from the ZnO-gel samples due to multiple path excitations. Furthermore, surface modification of ZnO by hydrogel increases the radiative efficiency of this hybrid colloidal material system thereby contributing to enhanced emission.
Date: May 2009
Creator: John, Sween
Partner: UNT Libraries

A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices

Description: The objective of this research is to investigate the use of laser direct writing to micro-pattern low loss passive optical channel waveguide devices using a new hybrid organic/inorganic polymer. Review of literature shows previous methods of optical waveguide device patterning as well as application of other non-polymer materials. System setup and design of the waveguide components are discussed. Results show that laser direct writing of the hybrid polymer produce single mode interconnects with a loss of less 1dB/cm.
Date: May 2008
Creator: Borden, Bradley W.
Partner: UNT Libraries

Wireless In-home Ecg Monitoring System with Remote Access

Description: The thesis work details the design and testing of a wireless electrocardiogram (ECG) system. This system includes a wireless ECG device, as well as software packages to visually display the waveform locally on a computer and remotely on a web page. The remote viewing capability also extends to using an Android phone application. The purpose of the system is to serve as a means for a doctor or physician to check up on a patient away from a hospital setting. This system allows for a patient to be in their home environment while giving health vital information, primarily being the heart’s activity through the ECG, to medical personnel.
Date: August 2012
Creator: Porter, Logan
Partner: UNT Libraries

Computer Virus Spread Containment Using Feedback Control.

Description: In this research, a security architecture based on the feedback control theory has been proposed. The first loop has been designed, developed and tested. The architecture proposes a feedback model with many controllers located at different stages of network. The controller at each stage gives feedback to the one at higher level and a decision about network security is taken. The first loop implemented in this thesis detects one important anomaly of virus attack, rate of outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing connection is an important one to contain the spread. Based on the feedback model, this symptom is fed back and a state model using queuing theory is developed to delay the connections and slow down the rate of outgoing connections. Upon implementation of this model, whenever an infected machine tries to make connections at a speed not considered safe, the controller kicks in and sends those connections to a delay queue. Because of delaying connections, rate of outgoing connections decrease. Also because of delaying, many connections timeout and get dropped, reducing the spread. PID controller is implemented to decide the number of connections going to safe or suspected queue. Multiple controllers can be implemented to control the parameters like delay and timeout. Control theory analysis is performed on the system to test for stability, controllability, observability. Sensitivity analysis is done to find out the sensitivity of the controller to the delay parameter. The first loop implemented gives feedback to the architecture proposed about symptoms of an attack at the node level. A controller needs to be developed to receive information from different controllers and decision about quarantining needs to be made. This research gives the basic information needed for the controller about what is going on at individual nodes of ...
Date: December 2004
Creator: Yelimeli Guruprasad, Arun
Partner: UNT Libraries

Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Description: Smart structures are relevant and significant because of their relevance to phenomena such as hazard mitigation, structural health monitoring and energy saving. Electrical resistance could potentially serve as an indicator of structural well-being or damage in the structure. To this end, the development of a microprocessor-based automated resistance measurement system with customized GUI is desired. In this research, a nodal electrical resistance acquisition circuit (NERAC) system was designed. The system hardware interfaces to a laptop, which houses a customized GUI developed using DAQFactory software. Resistance/impedance was measured using DC/AC methods with four-point probes technique, on three substrates. Baseline reading before damage was noted and compared with the resistance measured after damage. The device was calibrated and validated on three different substrates. Resistance measurements were taken from PVDF samples, composite panels and smart concrete. Results conformed to previous work done on these substrates, validating the effective working of the NERAC device.
Date: December 2009
Creator: Le, Dong D.
Partner: UNT Libraries

Measuring Atmospheric Ozone and Nitrogen Dioxide Concentration by Differential Optical Absorption Spectroscopy

Description: The main objective was to develop a procedure based on differential optical absorption spectroscopy (DOAS) to measure atmospheric total column of ozone, using the automated instrument developed at the University of North Texas (UNT) by Nebgen in 2006. This project also explored the ability of this instrument to provide measurements of atmospheric total column nitrogen dioxide. The instrument is located on top of UNT’s Environmental Education, Science and Technology Building. It employs a low cost spectrometer coupled with fiber optics, which are aimed at the sun to collect solar radiation. Measurements taken throughout the day with this instrument exhibited a large variability. The DOAS procedure derives total column ozone from the analysis of daily DOAS Langley plots. This plot relates the measured differential column to the airmass factor. The use of such plots is conditioned by the time the concentration of ozone remains constant. Observations of ozone are typically conducted throughout the day. Observations of total column ozone were conducted for 5 months. Values were derived from both DOAS and Nebgen’s procedure and compared to satellite data. Although differences observed from both procedures to satellite data were similar, the variability found in measurements was reduced from 70 Dobson units, with Nebgen’s procedure, to 4 Dobson units, with the DOAS procedure.A methodology to measure atmospheric nitrogen dioxide using DOAS was also investigated. Although a similar approach to ozone measurements could be applied, it was found that such measurements were limited by the amount of solar radiation collected by the instrument. Observations of nitrogen dioxide are typically conducted near sunrise or sunset, when solar radiation experiences most of the atmospheric absorption.
Date: December 2011
Creator: Jerez, Carlos J.
Partner: UNT Libraries

Piezoresistive Polyvinylidene Fluoride/Carbon Filled Nanocomposites

Description: This thesis examines the value of using dispersed conductive fillers as a stress/strain sensing material. The effect of the intrinsic conductivity of the filler on the ability to be effective and the influence of filler concentration on the conductivity are also examined. To meet these objectives, nanocomposites of polyvinylidene fluoride (PVDF) with carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were prepared by melt-blending using a twin screw extruder. Since PVDF has a potential to be piezoresistive based on the type of crystalline phase, the effect of CNFs on PVDF crystallinity, crystalline phase, quasi static and dynamic mechanical property was studied concurrently with piezoresponse. Three time dependencies were examined for PVDF/CNTs nanocomposites: quasi-static, transient and cyclic fatigue. The transient response of the strain with time showed viscoelastic behavior and was modeled by the 4-element Burger model. Under quasi-static loading the resistance showed negative pressure coefficient below yield but changed to a positive pressure coefficient after yield. Under cyclic load, the stress-time and resistance-time were synchronous but the resistance peak value decreased with increasing cycles, which was attributed to charge storage in the nanocomposite. The outcomes of this thesis indicate that a new piezoresponsive system based on filled polymers is a viable technology for structural health monitoring.
Date: May 2011
Creator: Vidhate, Shailesh
Partner: UNT Libraries

Increasing the Dynamic Range of Audio THD Measurements Using a Novel Noise and Distortion Canceling Methodology

Description: The objective of this study was to determine how a new experimental methodology for measuring Total-Harmonic-Distortion (THD) of operational amplifiers functioned when compared with two standard methodologies, and whether the new methodology offers any improvement in noise floor and dynamic range along with distortion canceling of the sine-wave source used in the testing. The new methodology (THD) is being tested against two standard methodologies: Spectral Analysis using a tuned receiver type Spectrum Analyzer with Notch Filter pre-processing, and a digitized Fast Fourier Transform (FFT) using Notch Filter pre-processing. The THD results appear to agree across all methodologies, and across all items of the sample within all methodologies, to within a percent or less. The distortion and noise canceling feature of the new methodology appeared to function as expected and in accordance with theory. The sample tested in the study consisted of thirty-five NE5534 operational amplifiers produced by Texas Instruments, Inc. and purchased from a local store. The NE5534 is a low-noise, low-distortion, operational amplifier that is widely used in industry and is representative of today's best audio amplifiers.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2003
Creator: Dunipace, Richard Alan
Partner: UNT Libraries

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Description: A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2006
Creator: Dhoopati, Swathi
Partner: UNT Libraries

Sunlight readability and luminance characteristics of light-emitting diode push button switches.

Description: Lighted push button switches and indicators serve many purposes in cockpits, shipboard applications and military ground vehicles. The quality of lighting produced by switches is vital to operators' understanding of the information displayed. Utilizing LED technology in lighted switches has challenges that can adversely affect lighting quality. Incomplete data exists to educate consumers about potential differences in LED switch performance between different manufacturers. LED switches from four different manufacturers were tested for six attributes of lighting quality: average luminance and power consumption at full voltage, sunlight readable contrast, luminance contrast under ambient sunlight, legend uniformity, and dual-color uniformity. Three of the four manufacturers have not developed LED push button switches that meet lighting quality standards established with incandescent technology.
Date: May 2004
Creator: Fitch, Robert J.
Partner: UNT Libraries

Surface Plasmon Based Nanophotonic Optical Emitters

Description: Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the effective mean path of light emitted from the light emitter and hence quenches the quantum well emission peak compared to the uncoated sample.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2005
Creator: Vemuri, Padma Rekha
Partner: UNT Libraries

Nodal Resistance Measurement System

Description: The latest development in the measurement techniques has resulted in fast improvements in the instruments used for measurement of various electrical quantities. A common problem in such instruments is the automation of acquiring, retrieving and controlling the measurements by a computer or a laptop. In this study, nodal resistance measurement (NRM) system is developed to solve the above problem. The purpose of this study is to design and develop a compact electronic board, which measures electrical resistance, and a computer or a laptop controls the board. For the above purpose, surface nodal points are created on the surface of the sample electrically conductive material. The nodal points are connected to the compact electronic board and this board is connected to the computer. The user selects the nodal points, from the computer, between which the NRM system measures the electrical resistance and displays the measured quantity on the computer.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2005
Creator: Putta, Sunil Kumar
Partner: UNT Libraries

MBE Growth and Instrumentation

Description: This thesis mainly aims at application of principles of engineering technology in the field of molecular beam epitaxy (MBE). MBE is a versatile technique for growing epitaxial thin films of semiconductors and metals by impinging molecular beams of atoms onto a heated substrate under ultra-high vacuum (UHV) conditions. Here, a LabVIEW® (laboratory virtual instrument engineering workbench) software (National Instruments Corp., http://www.ni.com/legal/termsofuse/unitedstates/usH) program is developed that would form the basis of a real-time control system that would transform MBE into a true-production technology. Growth conditions can be monitored in real-time with the help of reflection high energy electron diffraction (RHEED) technique. The period of one RHEED oscillation corresponds exactly to the growth of one monolayer of atoms of the semiconductor material. The PCI-1409 frame grabber card supplied by National Instruments is used in conjunction with the LabVIEW software to capture the RHEED images and capture the intensity of RHEED oscillations. The intensity values are written to a text file and plotted in the form of a graph. A fast Fourier transform of these oscillations gives the growth rate of the epi-wafer being grown. All the data being captured by the LabVIEW program can be saved to file forming a growth pedigree for future use. Unattended automation can be achieved by designing a control system that monitors the growth in real-time and compares it with the data recorded from the LabVIEW program from the previous growth and adjusts the growth parameters automatically thereby growing accurate device structures.
Date: May 2006
Creator: Tarigopula, Sriteja
Partner: UNT Libraries

Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks

Description: Indoor use of wireless systems poses one of the biggest design challenges. It is difficult to predict the propagation of a radio frequency wave in an indoor environment. To assist in deploying the above systems, characterization of the indoor radio propagation channel is essential. The contributions of this work are two-folds. First, in order to build a model, extensive field strength measurements are carried out inside two different buildings. Then, path loss exponents from log-distance path loss model and standard deviations from log-normal shadowing, which statistically describe the path loss models for a different transmitter receiver separations and scenarios, are determined. The purpose of this study is to characterize the indoor channel for 802.11 wireless local area networks at 2.4 GHz frequency. This thesis presents a channel model based on measurements conducted in commonly found scenarios in buildings. These scenarios include closed corridor, open corridor, classroom, and computer lab. Path loss equations are determined using log-distance path loss model and log-normal shadowing. The chi-square test statistic values for each access point are calculated to prove that the observed fading is a normal distribution at 5% significance level. Finally, the propagation models from the two buildings are compared to validate the generated equations.
Date: December 2005
Creator: Tummala, Dinesh
Partner: UNT Libraries

Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications

Description: The utilization of biodegradable polymers is critical for developing “cradle to cradle” mindset with ecological, social and economic consequences. Poly(hydroxy butyrate-co-valerate) (PHBV) shows significant potential for many applications with a polypropylene equivalent mechanical performance. However, it has limitations including high crystallinity, brittleness, small processing window, etc. which need to be overcome before converting them into useful products. Further the development of biodegradable strain sensing polymer sensors for structural health monitoring has been a growing need. In this dissertation I utilize carbon nanotubes as a self sensing dispersed nanofiller. The impact of its addition on PHBV and a blend of PHBV with poly(butylene adipate-co-terephthalate) (PBAT) polymer was examined. Nanocomposites and blends of PHBV, PBAT, and MWCNTs were prepared by melt-blending. The effect of MWCNTs on PHBV crystallinity, crystalline phase, quasi-static and dynamic mechanical property was studied concurrently with piezoresistive response. In PHBV/PBAT blends a rare phenomenon of melting point elevation by the addition of low melting point PBAT was observed. The blends of these two semicrystalline aliphatic and aromatic polyesters were investigated by using differential scanning calorimetry, small angle X-ray scattering, dynamic mechanical analysis, surface energy measurement by contact angle method, polarized optical and scanning electron microscopy, and rheology. The study revealed a transition of immiscible blend compositions to miscible blend compositions across the 0-100 composition range. PHBV10, 20, and 30 were determined to be miscible blends based on a single Tg and rheological properties. The inter-relation between stress, strain, morphological structure and piezoresistive response of MWCNT filled PHBV and PHBV/PBAT blend system was thoroughly investigated. The outcomes of piezoreistivity study indicated MWCNT filled PHBV and PHBV/PBAT blend system as a viable technology for structural health monitoring. Finally, the compostability of pure polymer, blend system, and MWCNT filled system was studied indicating that PBAT and CNT decreased the biodegradability of PHBV ...
Date: December 2011
Creator: Vidhate, Shailesh.
Partner: UNT Libraries

Design of a Lower Extremity Exoskeleton to Increase Knee ROM during Valgus Bracing for Osteoarthritic Gait

Description: Knee osteoarthritis (KOA) is the primary cause of chronic immobility in populations over the age of 65. It is a joint degenerative disease in which the articular cartilage in the knee joint wears down over time, leading to symptoms of pain, instability, joint stiffness, and misalignment of the lower extremities. Without intervention, these symptoms gradually worsen over time, decreasing the overall knee range of motion (ROM) and ability to walk. Current clinical interventions include offloading braces, which mechanically realign the lower extremities to alleviate the pain experienced in the medial compartment of the knee joint. Though these braces have proven effective in pain management, studies have shown a significant decrease in knee ROM while using the brace. Concurrently, development of active exoskeletons for rehabilitative gait has increased within recent years in efforts to provide patients with a more effective intervention for dealing with KOA. Though some developed exoskeletons are promising in their efficacy of fostering gait therapy, these devices are heavy, tethered, difficult to control, unavailable to patients, or costly due to the number of complicated components used to manufacture the device. However, the idea that an active component can improve gait therapy for patients motivates this study. This study proposes the design of an adjustable lower extremity exoskeleton which features a single linear actuator adapted onto a commercially available offloading brace. This design hopes to provide patients with pain alleviation from the brace, while also actively driving the knee through flexion and extension. The design and execution of this exoskeleton was accomplished by 3D computer simulation, 3D CAD modeling, and rapid prototyping techniques. The exoskeleton features 3D printed, ABS plastic struts and supports to achieve successful adaptation of the linear actuator to the brace and an electromechanical system with a rechargeable operating capacity of 7 hours. Design validation was ...
Date: May 2017
Creator: Cao, Jennifer M
Partner: UNT Libraries