51 Matching Results

Search Results

Framework for Adaptable Operating and Runtime Systems: Final Project Report

Description: In this grant, we examined a wide range of techniques for constructing high-performance con#12;gurable system software for HPC systems and its application to DOE-relevant problems. Overall, research and development on this project focused in three specifc areas: (1) software frameworks for constructing and deploying con#12;gurable system software, (2) applcation of these frameworks to HPC-oriented adaptable networking software, (3) performance analysis of HPC system software to understand opportunities for performance optimization.
Date: February 1, 2012
Creator: Bridges, Patrick G.
Partner: UNT Libraries Government Documents Department

Design and Development of Selective Extractants for An/Ln Separations

Description: This study has succeeded in further developing phosphinoylmethyl pyridine compounds as selective recognition and separations agents for trivalent lanthanide and actinide ions present in nuclear materials. The parameters for efficient separations have been further elucidated and factors important to further development have been identified. Further development will lead to optimal extractant design for effective actinide ion partitioning under process practical conditions. The primary objective of the project involved the design, synthesis, and characterization of the extraction performance of 2,6-bis(phosphinomethyl)pyridine N,P,P{prime}-trioxides (NOPOPO) as potential reagents for the separation of Am, Cm, and fission product lanthanides from other transuranics and fission products and for acting as a separations 'platform' for the mutual separation of Am/Cm from the lanthanides. The secondary but critical objective of the project focused on the characterization of aqueous acid and radiation stability of NOPOPO ligands. Further, the project served as a interdisciplinary training vehicle for new, young investigators in actinide separations chemistry.
Date: December 4, 2009
Creator: Paine, Robert T.
Partner: UNT Libraries Government Documents Department

Final Technical and Scientific Report

Description: The objective of this project is to study the ultrafast carrier dynamics of in two types of semiconductor quantum dots: self-assembled quantum dots (SAQDs) and patterned quantum dots (PQDs) and to correlate these dynamics with the shape, size and material composition of the dots, thereby obtaining a fundamental scientific understanding of these nanoscale systems.
Date: July 11, 2007
Creator: Krishna, Sanjay & Hufftaker, Diana
Partner: UNT Libraries Government Documents Department

Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

Description: Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.
Date: February 19, 2008
Creator: Sinsabaugh, R.L.; Zak, D.R. & Moorhead, D.L.
Partner: UNT Libraries Government Documents Department

Final Technical Report - Investigation into the Relationship between Heterogeneity and Heavy-Tailed Solute Transport

Description: The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.
Date: December 6, 2013
Creator: Weissmann, Gary S
Partner: UNT Libraries Government Documents Department

Experimental and Numerical Investigation of Flows in Expanding Channels

Description: We present an experimental realization of the classical Jeffery-Hamel flows inside a wedge-shaped channel. We compare the measured velocity fields with the predictions of Jeffery-Hamel theory. A detailed experimental study of bifurcation diagrams for the solutions reveals the absolute stability of the pure outflow solution and an interesting hysteretic structure for bifurcations. We also observe a multiple vortex flow regime predicted earlier numerically and analytically. Experimental studies of the stability of the flow to perturbations at the channel exit are also conducted.
Date: October 24, 2008
Creator: Vorobieff, Peter & Putkaradze, Vakhtang
Partner: UNT Libraries Government Documents Department

Coupling of the Photosphere to the Solar Corona: A laboratory and observational study of Alfvén wave interaction with a neutral gas

Description: The grant funded a three year project to investigate the role of Alfvén waves as a possible mechanism heating plasmas, with relevance to solar coronal heating. Evidence suggests that there is strong coupling between the solar photosphere, corona and solar wind through Alfvén wave interaction with the neutral gas particles. A laboratory experimental and solar observational plan was designed to investigate in detail this interaction. Although many of the original research goals were met, difficulties in detecting the Alfvén wave signature meant that much of the research was stymied. This report summaries the work during the grant period, the challenges encountered and overcome, and the future research directions.
Date: January 31, 2010
Creator: Watts, Christopher
Partner: UNT Libraries Government Documents Department

A Multivariate Time Series Method for Monte Carlo Reactor Analysis

Description: A robust multivariate time series method has been established for the Monte Carlo calculation of neutron multiplication problems. The method is termed Coarse Mesh Projection Method (CMPM) and can be implemented using the coarse statistical bins for acquisition of nuclear fission source data. A novel aspect of CMPM is the combination of the general technical principle of projection pursuit in the signal processing discipline and the neutron multiplication eigenvalue problem in the nuclear engineering discipline. CMPM enables reactor physicists to accurately evaluate major eigenvalue separations of nuclear reactors with continuous energy Monte Carlo calculation. CMPM was incorporated in the MCNP Monte Carlo particle transport code of Los Alamos National Laboratory. The great advantage of CMPM over the traditional Fission Matrix method is demonstrated for the three space-dimensional modeling of the initial core of a pressurized water reactor.
Date: August 14, 2008
Creator: Ueki, Taro
Partner: UNT Libraries Government Documents Department

Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants

Description: CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)
Date: April 30, 2009
Creator: Brinker, C.; Xomeritakis, George; Tsai, C.-Y. & Jiang, Ying-Bing
Partner: UNT Libraries Government Documents Department

High-Performance Phylogeny Reconstruction

Description: Under the Alfred P. Sloan Fellowship in Computational Biology, I have been afforded the opportunity to study phylogenetics--one of the most important and exciting disciplines in computational biology. A phylogeny depicts an evolutionary relationship among a set of organisms (or taxa). Typically, a phylogeny is represented by a binary tree, where modern organisms are placed at the leaves and ancestral organisms occupy internal nodes, with the edges of the tree denoting evolutionary relationships. The task of phylogenetics is to infer this tree from observations upon present-day organisms. Reconstructing phylogenies is a major component of modern research programs in many areas of biology and medicine, but it is enormously expensive. The most commonly used techniques attempt to solve NP-hard problems such as maximum likelihood and maximum parsimony, typically by bounded searches through an exponentially-sized tree-space. For example, there are over 13 billion possible trees for 13 organisms. Phylogenetic heuristics that quickly analyze large amounts of data accurately will revolutionize the biological field. This final report highlights my activities in phylogenetics during the two-year postdoctoral period at the University of New Mexico under Prof. Bernard Moret. Specifically, this report reports my scientific, community and professional activities as an Alfred P. Sloan Postdoctoral Fellow in Computational Biology.
Date: November 10, 2004
Creator: Williams, Tiffani L.
Partner: UNT Libraries Government Documents Department

Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

Description: A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.
Date: July 7, 2013
Creator: Gilmore, Mark Allen
Partner: UNT Libraries Government Documents Department

Field-Scale In Situ Measurements of Vadose Zone Flow and Transport Using Multiple Tracers at INEEL Vadose Zone Research Park (VZRP)

Description: This study is aimed at obtaining a better understanding of vadose zone flow and transport processes at the field scale and establishing defensible links between laboratory- and field-derived transport parameters for conservative and reactive elements in the vadose zone. The study site (Vadose Zone Research Park [VZRP] at INEEL) provides a three dimensional instrumentation array strategically surrounding a new infiltration pond slated for initial use in the upcoming year, and the Big Lost River, and intermittent stream proximal to the infiltration ponds. The proposed research will utilize the infiltration ponds and the Big Lost River to study the effects of fluid flux, water chemistry and degree of saturation on contaminant transport in the vadose zone. Our research plan has four major objectives: (1) determine the transport of conservative and reactive solute and colloid tracers through the vadose zone and local perched water zones; (2) examine isotopic variations of U and Sr and compare these to introduced sorbing and non-sorbing tracers; (3) develop and calibrate a conceptual flow and transport model, and (4) examine the effects of flow and geochemical transients on tracer transport.
Date: December 1, 2004
Creator: Asmerom, Yemane
Partner: UNT Libraries Government Documents Department

Preorganized and immobilized ligands for metal ion separations. Final report, June 1994--May 1997

Description: Historically, much of the interest shown in f-element ion coordination chemistry has been driven by practical needs to devise separation schemes for lanthanide (Ln) and actinide (An) ions. However, few of the separations are completely satisfactory, and the basic chemical framework needed to achieve improvements is still poorly developed. As a result, studies of the fundamental aspects of f-element coordination chemistry are still pertinent not only to the evolution of improved separations, but also waste remediation, biological and medical applications of Ln ions, biochemistry of An ion decorporation, and new solid state materials preparations. The research objectives during the present grant period were to (1) synthesize new bifunctional and trifunctional chelating ligands, particularly in the class of new phosphonopyridine N-oxides; (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands; (3) determine the extraction efficacy of these ligands; and (4) explore synthetic approaches for formation of dendritic polymers containing phosphoryl terminating groups. Some highlights of recently accomplished work and still-in-progress research are outlined.
Date: December 1, 1997
Creator: Paine, R. T.
Partner: UNT Libraries Government Documents Department

F-Element ion chelation in highly basic media. Annual progress report, October 1, 1996--July 1, 1997

Description: 'The specific fundamental chemical objectives of this project are to: (1) study the chemical speciation of Sr and Ln ions in basic media formed in aqueous solutions with and without classical chelation agents (e.g., EDTA, polyphosphates, and organic carboxylates); (2) prepare pyridine N-oxide phosphonate and phosphonoacetate chelators of the types 1--3 and characterize their ionization properties by titrimetric techniques; (3) study the interactions of 5--7 with soluble oxide-hydroxide metallate species and higher molecular weight sols, gels and precipitates containing Sr and Ln ions, as time permits, interactions with oxide-hydroxide metallates of U, Th, Ba, Al and Fe will also be studied; (4) study the interactions of newly designed phosphonate ligands with oxide-hydroxide metallate species; (5) transfer the fundamental coordination chemistry revealed here to research groups at LANL and PNNL that will utilize the results to improve tank waste treatment protocols.'
Date: December 31, 1997
Creator: Paine, R. T.
Partner: UNT Libraries Government Documents Department


Description: Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating dispersant, plasticizer and binder provided superior cracking resistance compared to simple water, alcohol, or polyethylene glycol (PEG) based formulations. With a formulation employing castor oil as dispersant, isopropyl alcohol/mineral ...
Date: July 1, 2002
Creator: Ward, Timothy L.
Partner: UNT Libraries Government Documents Department

f-Element Ion Chelation in Highly Basic Media

Description: High-level radioactive waste (HLW) generated in the DOE complex is stored in tanks at several sites, but predominantly it is found at the Hanford reservation. Much of the material has been exposed to high pHs, consequently the waste exists in a complex, poorly understood mixture of solids, gels and solutions. The final waste remediation plan may involve chemical separation of fractions and a suitable, well developed molecular chemistry basis for performing these separations is not available. Indeed, the fundamental chemical behavior of most radioactive nuclides in basic media is not known. The goal of this project is to undertake fundamental studies of the coordination chemistry of f-element species in basic aqueous solutions containing common waste treatment ions (e.g., NO3 -, CO3 2-, organic carboxylates, and EDTA), as well as new waste scrubbing chelators produced in this study. The experimental agenda includes: 1. Studies of the speciation of Sr and Ln ions in basic solutions wit h and without common counterions; 2. Preparations of new multifunctional ligands that may act as strong, ion-specific chelators for Sr and/or Ln ions in basic media; and 3. Studies of the coordination and dissolution behavior of oxide-hydroxide species, as well as in insoluble sols, gels, and precipitates in combination with new chelating ligands. It is anticipated that this coordination chemistry will facilitate the design of advanced separation schemes required for handling the complex waste matrices found at the Hanford HLW facility.
Date: June 1, 1999
Creator: Paine, Robert T.
Partner: UNT Libraries Government Documents Department


Description: This project addresses the need for reliable fabrication methods of supported thin/thick dense ceramic membranes for oxygen separation. Some ceramic materials that possess mixed conductivity (electronic and ionic) at high temperature have the potential to permeate oxygen with perfect selectivity, making them very attractive for oxygen separation and membrane reactor applications. In order to maximize permeation rates at the lowest possible temperatures, it is desirable to minimize diffusional limitations within the ceramic by reducing the thickness of the ceramic membrane, preferably to thicknesses of 10 {micro}m or thinner. It has proven to be very challenging to reliably fabricate dense, defect-free ceramic membrane layers of such thickness. In this project we are investigating the use of ultrafine SrCo{sub 0.5}FeO{sub x} (SCFO) powders produced by aerosol pyrolysis to fabricate such supported membranes. SrCo{sub 0.5}FeO{sub x} is a ceramic composition that has been shown to have desirable oxygen permeability, as well as good chemical stability in the reducing environments that are encountered in some important applications. Our approach is to use a doctor blade procedure to deposit pastes prepared from the aerosol-derived SCFO powders onto porous SCFO supports. We have previously shown that membrane layers deposited from the aerosol powders can be sintered to high density without densification of the underlying support. However, these membrane layers contained large-scale cracks and open areas, making them unacceptable for membrane purposes. In the past year, we have refined the paste formulations based on guidance from the ceramic tape casting literature. We have identified a multicomponent organic formulation utilizing castor oil as dispersant in a solvent of mineral spirits and isopropanol. Other additives were polyvinylbutyral as binder and dibutylphthalate as plasticizer. The nonaqueous formulation has superior wetting properties with the powder, and presumably evolves less tensile stress during drying. Membrane layers have been first made from the ...
Date: March 1, 2003
Creator: Ward, Timothy L.
Partner: UNT Libraries Government Documents Department

Experimental and Numerical Investigation of Flows in Expanding Channels

Description: This is the first year progress report for our grant starting Feb. 1 2004. It describes experimental and theoretical achievements during the first year, lists the articles published during this period, as well as the progress of the graduate students supported by this grant. The timeline for the future is outlined; the current results convince us that the work will be done on time and within the budget.
Date: October 28, 2004
Creator: Vorobieff, Vakhtang Putkaradze Peter
Partner: UNT Libraries Government Documents Department

A Rgularized Boltzmann Scattering Operator for Highly Forward Peaked Scattering

Description: Extremely short collision mean free paths and near-singular elastic and inelastic differential cross sections (DCS) make analog Monte Carlo and deterministic computational approaches impractical for charged particle transport. The widely used alternative, the condensed history method, while efficient, also suffers from several limitations arising from the use of precomputed infinite medium distributions for sampling particle directions and energies.
Date: April 13, 2005
Creator: Prinja, Anil K.
Partner: UNT Libraries Government Documents Department

A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

Description: There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Z<U+2010>machine, operated by Sandia National Laboratories in Albuquerque, NM<U+2020>; the OMEGA Laser Facility at the University of Rochester in Rochester, NY<U+00A7>; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California<U+2021>. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNP<U+2010>PoliMi<U+F0D1>was developed in 2002 to simulate neutron and gamma<U+2010>ray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the post<U+2010>processing code which accompanies MCNP<U+2010>PoliMi assumes a detector operating in single<U+2010>event counting mode and not current mode. Therefore, the idea for this work had been born: could a new post<U+2010>processing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that could be removed or modified to produce %E2%80%9Ccleaner%E2%80%9D neutron signals? This process was ...
Date: September 1, 2013
Creator: Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise et al.
Partner: UNT Libraries Government Documents Department

A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing.

Description: The human brain (volume=1200cm3) consumes 20W and is capable of performing>10%5E16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m%5E3 and 3MW, giving the brain a 10%5E12 advantage in operations/s/W/cm%5E3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.
Date: October 1, 2013
Creator: James, Conrad D.; Schiess, Adrian B.; Howell, Jamie; Baca, Micheal J.; Partridge, L. Donald; Finnegan, Patrick Sean et al.
Partner: UNT Libraries Government Documents Department

Investigating an API for resilient exascale computing.

Description: Increased HPC capability comes with increased complexity, part counts, and fault occurrences. In- creasing the resilience of systems and applications to faults is a critical requirement facing the viability of exascale systems, as the overhead of traditional checkpoint/restart is projected to outweigh its bene ts due to fault rates outpacing I/O bandwidths. As faults occur and propagate throughout hardware and software layers, pervasive noti cation and handling mechanisms are necessary. This report describes an initial investigation of fault types and programming interfaces to mitigate them. Proof-of-concept APIs are presented for the frequent and important cases of memory errors and node failures, and a strategy proposed for lesystem failures. These involve changes to the operating system, runtime, I/O library, and application layers. While a single API for fault handling among hardware and OS and application system-wide remains elusive, the e ort increased our understanding of both the mountainous challenges and the promising trailheads. 3
Date: May 1, 2013
Creator: Stearley, Jon R.; Tomkins, James; VanDyke, John P.; Ferreira, Kurt Brian; Laros, James H., & Bridges, Patrick
Partner: UNT Libraries Government Documents Department