Search Results

Rediscovery of the Elements: Strontium

Description: Article describing the history of the element strontium from its discovery in Strontian, Scotland, to its early uses in English medicine. Maps with directions and photographs of pertinent locations are included.
Date: Autumn 2002
Creator: Marshall, James L., 1940- & Marshall, Virginia R.
Partner: UNT College of Arts and Sciences

Dependence of Electronic Structure of SrRuO3 and the Degree of Correlation on Cation Off-Stoichiometry

Description: We have grown and studied high quality SrRuO{sub 3} films grown by MBE as well as PLD. By changing the oxygen activity during deposition we were able to make SrRuO{sub 3} samples that were stoichiometric (low oxygen activity) or with ruthenium vacancies (high oxygen activity). Samples with strontium vacancies were found impossible to produce since the ruthenium would precipitate out as RuO{sub 2}. The volume of the unit cell of SrRuO{sub 3} becomes larger as more ruthenium vacancies are introduced. The residual resistivity ratio (RRR) and room temperature resistivity were found to systematically depend on the volume of the unit cell and therefore on the amount of ruthenium vacancies. The RRR varied from {approx}30 for stoichiometric samples to less than two for samples that were very ruthenium poor. The room temperature resistivity varied from 190 {micro}{Omega} cm for stoichoimetric samples to over 300 {micro}{Omega} cm for very ruthenium poor samples. UPS spectra show a shift of weight from the coherent peak to the incoherent peak around the Fermi level when samples have more ruthenium vacancies. Core level XPS spectra of the ruthenium 3d lines show a strong screened part in the case of stoichiometric samples. This screened part disappears when ruthenium vacancies are introduced. Both the UPS and the XPS results are consistent with the view that correlation increases as the amount of ruthenium vacancies increase.
Date: August 19, 2011
Creator: Siemons, W.
Partner: UNT Libraries Government Documents Department

Enhanced Densification of SDC Barrier Layers

Description: This technical report explores the Enhanced Densification of SCD Barrier Layers A samaria-doped ceria (SDC) barrier layer separates the lanthanum strontium cobalt ferrite (LSCF) cathode from the yttria-stabilized zirconia (YSZ) electrolyte in a solid oxide fuel cell (SOFC) to prevent the formation of electrically resistive interfacial SrZrO{sub 3} layers that arise from the reaction of Sr from the LSCF with Zr from the YSZ. However, the sintering temperature of this SDC layer must be limited to {approx}1200 C to avoid extensive interdiffusion between SDC and YSZ to form a resistive CeO{sub 2}-ZrO{sub 2} solid solution. Therefore, the conventional SDC layer is often porous and therefore not as impervious to Sr-diffusion as would be desired. In the pursuit of improved SOFC performance, efforts have been directed toward increasing the density of the SDC barrier layer without increasing the sintering temperature. The density of the SDC barrier layer can be greatly increased through small amounts of Cu-doping of the SDC powder together with increased solids loading and use of an appropriate binder system in the screen print ink. However, the resulting performance of cells with these barrier layers did not exhibit the expected increase in accordance with that achieved with the prototypical PLD SDC layer. It was determined by XRD that increased sinterability of the SDC also results in increased interdiffusivity between the SDC and YSZ, resulting in formation of a highly resistive solid solution.
Date: September 12, 2011
Creator: Hardy, John S.; Templeton, Jared W.; Lu, Zigui & Stevenson, Jeffry W.
Partner: UNT Libraries Government Documents Department

Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

Description: Following completion of contracting activities, sites were identified for the field leachate characterization study. Sampling and Analyses Plans (SAPs) and Site Access Agreements (SAAs) were developed for each site. A total of ten sites were sampled during this reporting period. Among the trace constituents, boron, silicon, and strontium were present in highest concentrations, with median values above 1 mg/L (1,000 {micro}g/L). Work on the first of three sites for the detailed arsenic and selenium adsorption studies began in 2002, prior to completion of the final DOE award. Kd values ranged from 100 to 12,000 L/kg for arsenic (V), 15 to 160 for As(III), and 5 to 25 L/kg for Se(VI).
Date: October 18, 2005
Creator: Ladwig, K.; Hensel, B.; Wallschlager, D.; Lee, L. & Murarka, I.
Partner: UNT Libraries Government Documents Department

Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

Description: The primary objective of the Notre Dame component of the project was computational in nature. The goal was to provide a design tool for the synthesis of optimized sorbents for the removal of cesium, strontium and actinides from nuclear waste solutions. Molecular modeling enables us to observe and better understand the molecular level interactions that govern the selectivity of specific radionuclides in a particular sorbent. The research focused on the development and validation of a suitable and transferable model for all the cations and ion exchangers of interest, nd then subsequent simulations which determined the siting and mobility of water and cations. Speciic accomplishments include: (1) improving existing intermolecular force fields to accurately model the sorbents of interest; (2) utilizing energy-minimizations and molecular dynamics simulations for structural prediction of CST and niobium-substituted CST materials; (3) determining Na+/water positions in polyoxoniobate materials using molecular dynamics simulations; and (4) developing Hybrid Monte Carlo methods for improved structural prediction.
Date: November 9, 2009
Creator: Maginn, Edward J.
Partner: UNT Libraries Government Documents Department

Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

Description: This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report
Date: October 31, 2001
Creator: Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C. & Walker, Darrell D.
Partner: UNT Libraries Government Documents Department

Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1

Description: This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.
Date: December 10, 2001
Creator: Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C. & Walker, Darrell D.
Partner: UNT Libraries Government Documents Department

Small Column Ion Exchange Design and Safety Strategy

Description: Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and includes provisions for equipment maintenance including remote handling. The design includes a robust ...
Date: February 7, 2011
Creator: Huff, T.; Rios-Armstrong, M.; Edwards, R. & Herman, D.
Partner: UNT Libraries Government Documents Department

Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

Description: In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.
Date: May 15, 2000
Creator: Harmon, Harry D.
Partner: UNT Libraries Government Documents Department

Surface Complexation Model for Strontium Sorption to Amorphous Silica and Goethite

Description: Strontium sorption to amorphous silica and goethite was measured as a function of pH and dissolved strontium and carbonate concentrations at 25 C. Strontium sorption gradually increases from 0 to 100% from pH 6 to 10 for both phases and requires multiple outer-sphere surface complexes to fit the data. All data are modeled using the triple layer model and the site-occupancy standard state; unless stated otherwise all strontium complexes are mononuclear. Strontium sorption to amorphous silica in the presence and absence of dissolved carbonate can be fit with tetradentate Sr{sup 2+} and SrOH{sup +} complexes on the {beta}-plane and a monodentate Sr{sup 2+} complex on the diffuse plane to account for strontium sorption at low ionic strength. Strontium sorption to goethite in the absence of dissolved carbonate can be fit with monodentate and tetradentate SrOH{sup +} complexes and a tetradentate binuclear Sr{sup 2+} species on the {beta}-plane. The binuclear complex is needed to account for enhanced sorption at high strontium surface loadings. In the presence of dissolved carbonate additional monodentate Sr{sup 2+} and SrOH{sup +} carbonate surface complexes on the {beta}-plane are needed to fit strontium sorption to goethite. Modeling strontium sorption as outer-sphere complexes is consistent with quantitative analysis of extended X-ray absorption fine structure (EXAFS) on selected sorption samples that show a single first shell of oxygen atoms around strontium indicating hydrated surface complexes at the amorphous silica and goethite surfaces. Strontium surface complexation equilibrium constants determined in this study combined with other alkaline earth surface complexation constants are used to recalibrate a predictive model based on Born solvation and crystal-chemistry theory. The model is accurate to about 0.7 log K units. More studies are needed to determine the dependence of alkaline earth sorption on ionic strength and dissolved carbonate and sulfate concentrations for the development of a ...
Date: November 30, 2007
Creator: Carroll, S; Robers, S; Criscenti, L & O'Day, P
Partner: UNT Libraries Government Documents Department


Description: This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg{sup -1}. Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12500 mg U kg{sup -1} (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg{sup -1}), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), ...
Date: January 12, 2012
Creator: Caldwell, E.; Duff, M.; Hicks, T.; Coughlin, D.; Hicks, R. & Dixon, E.
Partner: UNT Libraries Government Documents Department


Description: The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing ...
Date: November 8, 2004
Creator: Paller, M & Susan Dyer, S
Partner: UNT Libraries Government Documents Department


Description: Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU). Sorption testing was performed using both MST and modified MST (mMST) in the presence of 5,000 and 10,000 ppm (mass basis) glycolate. 10,000 ppm is the estimated bounding concentration expected in the DWPF recycle stream based on DWPF melter flammable gas model results. The presence of glycolate was found to slow the removal of Sr and Pu by MST, while increasing the removal rate of Np. Results indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. There was no measurable effect on U removal at either glycolate concentration. The slower removal rates for Sr and Pu at 5,000 and 10,000 ppm glycolate could result in lower DF values for these sorbates in ARP based on the current (12 hours) and proposed (8 hours) contact times. For the highest glycolate concentration used in this study, the percentage of Sr removed at 6 hours of contact decreased by 1% and the percentage of Pu removed decreased by nearly 7%. The impact may prove insignificant if the concentration of glycolate that is returned to the tank farm is well below the concentrations tested in this study. The presence of glycolate also decreased the removal rates for all three sorbates (Sr, Pu, and Np) by mMST. Similarly to MST, ...
Date: June 4, 2012
Creator: Taylor-Pashow, K.; Peters, T. & Shehee, T.
Partner: UNT Libraries Government Documents Department


Description: In 2008, the Savannah River Site (SRS) began treatment of liquid radioactive waste from its Tank Farms. To treat waste streams containing {sup 137}Cs, {sup 90}Sr, and actinides, SRS developed the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The Actinide Removal Process contacts the waste with monosodium titanate (MST) to sorb strontium and select actinides. After MST contact, the process filters the resulting slurry to remove the MST (with sorbed strontium and actinides) and any entrained sludge. The filtrate is transported to the MCU to remove cesium. The solid particle removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the concentration of dissolved sodium, and transported to the Defense Waste Processing Facility (DWPF) for vitrification. The authors conducted tests with 0.5 {micro} and 0.1 {micro} Mott sintered stainless steel crossflow filter at bench-scale (0.19 ft{sup 2} surface area) and pilot-scale (11.2 ft{sup 2}). The collected data supported design of the filter for the process and identified preferred operating conditions for the full-scale process (230 ft{sup 2}). The testing investigated the influence of operating parameters, such as filter pore size, axial velocity, transmembrane pressure, and solids loading, on filter flux, and validated the simulant used for pilot-scale testing. The conclusions from this work follow: (1) The 0.1 {micro} Mott sintered stainless steel filter produced higher flux than the 0.5 {micro} filter. (2) The filtrate samples collected showed no visible solids. (3) The filter flux with actual waste is comparable to the filter flux with simulated waste, with the simulated waste being conservative. This result shows the simulated sludge is representative of the actual sludge. (4) When the data is adjusted for differences in transmembrane pressure, the filter flux in the Actinide Removal Process is comparable to the filter flux in ...
Date: March 1, 2009
Creator: Poirier, M; David Herman, D; Samuel Fink, S & Julius Lacerna, J
Partner: UNT Libraries Government Documents Department


Description: The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.
Date: November 7, 2011
Creator: Koopman, D.; Lambert, D.; Fox, K. & Stone, M.
Partner: UNT Libraries Government Documents Department


Description: Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low ...
Date: September 23, 2009
Creator: Denham, M.; Kaplan, D. & Yeager, C.
Partner: UNT Libraries Government Documents Department

Prediction Models for Plutonium, Strontium, Uranium and Neptunium Loading onto Monosodium Titanate (MST)

Description: The DA isotherm parameters for U, Pu, Sr and Np have been updated to include additional data obtained since the original derivation. The DA isotherms were modified to include a kinetic function derived by Rahn to describe sorbate loading from the beginning of sorption up to equilibrium. The final functions describe both kinetic and thermodynamic sorption. We selected the Rahn function to describe radionuclide sorption because it originates from diffusion and absorption controlled sorption. An investigation of the thermal behavior of radionuclide sorption on MST as shown by this data revealed the sorption process is diffusion (or transport) controlled (in solution). Transport in solution can in theory be accelerated by vigorous mixing but the range of available mixing speed in the facility design will probably not be sufficient to markedly increase radionuclide sorption rate on MST from diffusion-controlled sorption. The laboratory studies included mixing energies hydraulically-scaled to match those of the Actinide Removal Process and these likely approximate the range of energies available in the Salt Waste Processing Facility.
Date: July 11, 2005
Creator: Fondeur, F. F.; Hobbs, D. T.; Barnes, M. J.; Peters, T. B. & Fink, S. D.
Partner: UNT Libraries Government Documents Department


Description: High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 134,137}Cs, {sup 90}Sr, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. An inorganic sorbent, monosodium titanate (MST), is currently used to remove {sup 90}Sr and alpha-emitting radionuclides, while a caustic-side solvent extraction process is used for removing {sup 134,137}Cs. A new peroxotitanate material, modified MST, or mMST, has recently been developed and has shown increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the current baseline material, MST. This paper describes recent results focused on further characterization of this material.
Date: December 21, 2010
Creator: Hobbs, D.; Taylor-Pashow, K. & Missimer, D.
Partner: UNT Libraries Government Documents Department


Description: Savannah River National Laboratory (SRNL) evaluated the previous monosodium titanate (MST) purchase specifications for particle size and strontium decontamination factor. Based on the measured particle size and filtration performance characteristics of several MST samples with simulated waste solutions and various filter membranes we recommend changing the particle size specification as follows. The recommended specification varies with the size and manufacturer of the filter membrane as shown below. We recommend that future batches of MST received at SRS be tested for particle size and filtration performance. This will increase the available database and provide increased confidence that particle size parameters are an accurate prediction of filtration performance. Testing demonstrated the feasibility of a non-radiochemical method for evaluating strontium removal performance of MST samples. Using this analytical methodology we recommend that the purchase specification include the requirement that the MST exhibits a strontium DF factor of >1.79 upon contact with a simulated waste solution with composition as reported for simulated waste solution SWS-7-2005-1 in Table 1 and containing 5.2 to 5.7 mg L{sup -1} strontium with 0.1 g L{sup -1} of the MST. We also recommend performing additional tests with these simulants and MST samples and, if available, new MST samples, to determine the reproducibility and increase the available database for the measurements by the ICP-ES instrument. These measurements will provide increased confidence that the non-radiological method provides a reliable method for evaluating the strontium and actinide removal performance for MST samples.
Date: April 30, 2006
Creator: Hobbs, D
Partner: UNT Libraries Government Documents Department


Description: A series of sediment distribution coefficients, Kd values, measurements were conducted for Southern Nuclear Company, Inc. in support of their Early Site Permit application at Plant Vogtle, Georgia. Nineteen sediment and a representative groundwater samples from the Vogtle site were provided for the Savannah River National Laboratory to conducted site-specific Co, Cs, and Sr Kd measurements. The median Kd values of Co was 6.5 mL/g, for Sr was 10.0 mL/g, and for Cs was 18.8 mL/g. Cation exchange capacity (6.8 to 33.6 meq/100 g), particle size distribution (70 to 94% sand) and pH (4.7 to 5.2) were also measured in five sediments. The Kd values and the sediment properties values measured in these sediments were consistent with those measured in this region of the country.
Date: July 18, 2006
Creator: Kaplan, D & Margaret Millings, M
Partner: UNT Libraries Government Documents Department


Description: The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigate that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.
Date: November 11, 2010
Creator: Fondeur, F.; Pennebaker, F. & Fink, S.
Partner: UNT Libraries Government Documents Department