Search Results

Housekeeping Closure Report for Corrective Action Unit 212: Area 23 Warehouses E and R Chemical Storage, Nevada Test Site, Nevada

Description: The Federal Facility Agreement and Consent Order was entered into by the State of Nevada; U.S. Department of Energy, and the U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts of the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at six CASs within CAU 212 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris, drums, batteries, scrap metal, and other material. Based on these activities, no further action is required at these CASs.
Date: May 1, 1999
Creator: /NV, USDOE
Item Type: Report
Partner: UNT Libraries Government Documents Department

Environmental Assessment and Finding of No Significant Impact: On-Site Treatment of Low Level Mixed Waste

Description: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1292) to evaluate the proposed treatment of low level mixed waste (LLMW) at the Rocky Flats Environmental Technology Site (Site). The purpose of the action is to treat LLMW in order to meet the Land Disposal Restrictions specified by the Resource Conservation and Recovery Act and the waste acceptance criteria of the planned disposal site(s). Approximately 17,000 cubic meters (m{sup 3}) of LLMW are currently stored at the Site. Another 65,000 m{sup 3}of LLMW are likely to be generated by Site closure activities (a total of 82,000 m{sup 3} of LLMW). About 35,000 m{sup 3} can be directly disposed of off-site without treatment, and most of the remaining 47,000 m{sup 3} of LLMW can be treated at off-site treatment, storage, and disposal facilities. However, some LLMW will require treatment on-site, either because it does not meet shipping requirements or because off-site treatment is not available for these particular types of LLMW. Currently, this LLMW is stored at the Site pending the development and implementation of effective treatment processes. The Site needs to treat this LLMW on-site prior to shipment to off-site disposal facilities, in order to meet the DOE long-term objective of clean up and closure of the Site. All on-site treatment of LLMW would comply with applicable Federal and State laws designed to protect public health and safety and to enhance protection of the environment. The EA describes and analyzes the environmental effects of the proposed action (using ten mobile treatment processes to treat waste on-site), and the alternatives of treating waste onsite (using two fixed treatment processes), and of taking no action. The EA was the subject of a public comment period from February 3 to 24, 1999. No written or other comments regarding the EA were ...
Date: March 22, 1999
Creator: /A, N
Item Type: Report
Partner: UNT Libraries Government Documents Department

Environmental Assessment and Finding of No Significant Impact - Mckay Bypass Canal Extension

Description: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1262) to extend the McKay Bypass Canal on the east side of the Rocky Flats Environmental Technology Site (Site), located north of Golden, Colorado. The McKay Bypass Canal Extension (Extension) is needed to route water from the existing canal around the Walnut Creek drainage, thus preventing potential co-mingling of Broomfield city water (collected from the Coal Creek drainage) with Site runoff water. The EA describes and analyzes the environmental effects of the Proposed Action (using a buried pipeline for the extension), and the alternatives of taking no action, using an open ditch for the extension, and using an aboveground pipeline for the extension. The EA was the subject of a public comment period from July 22 to August 6, 1998. Written comments regarding the EA were received from the City of Broomfield and the Colorado Department of Public Health and Environment.
Date: September 1, 1998
Creator: /A, N
Item Type: Report
Partner: UNT Libraries Government Documents Department

Environmental Management System Plan

Description: Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and other natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These DOE Orders and associated policies establish goals and sustainable stewardship practices that are protective of environmental, natural, and cultural resources, and take a life cycle approach that ...
Date: March 24, 2009
Creator: Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy & Hatayama, Howard
Item Type: Report
Partner: UNT Libraries Government Documents Department

Characterization of Pathogenicity, Virulence and Host-Pathogen Interractions

Description: The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the area of host-pathogen interactions as well as policy makers from federal agencies. The main objectives of the workshop are: (1) to ...
Date: July 27, 2006
Creator: Krishnan, A & Folta, P
Item Type: Article
Partner: UNT Libraries Government Documents Department

BioWatch in a Box

Description: BioWatch, the U.S. Department of Homeland Security (DHS) environmental monitoring program, has been successfully operating in many of the nation's urban centers since early 2003. This early warning environmental monitoring system can detect trace amounts of biological materials in the air, and has been used to provide information to assist public health experts determine whether detected materials are due to an intentional release (bioterrorism incident) or due to minute quantities that occur naturally in the environment. BioWatch information enables federal, state, and local officials to more quickly determine appropriate emergency response, medical care and consequence management.
Date: February 1, 2006
Creator: McBride, M T; Dzentis, J M & Meyer, R M
Item Type: Report
Partner: UNT Libraries Government Documents Department

Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

Description: On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.
Date: June 30, 2008
Creator: Lesperance, Ann M.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Biosecurity reference : CFR-listed agent and toxin summaries.

Description: This reference document provides summary information on the animal, plant, zoonotic, and human pathogens and toxins regulated and categorized by 9 CFR 331 and 7 CFR 121, 'Agricultural Bioterrorism Protection Act of 2002; Possession, Use and Transfer of Biological Agents and Toxins,' and 42 CFR 73, 'Possession, Use, and Transfer of Select Agents and Toxins.' Summary information includes, at a minimum, a description of the agent and its associated symptoms; often additional information is provided on the diagnosis, treatment, geographic distribution, transmission, control and eradication, and impacts on public health.
Date: September 1, 2003
Creator: Barnett, Natalie Beth
Item Type: Report
Partner: UNT Libraries Government Documents Department

Developing Human Performance Measures

Description: Through the reactor oversight process (ROP), the U.S. Nuclear Regulatory Commission (NRC) monitors the performance of utilities licensed to operate nuclear power plants. The process is designed to assure public health and safety by providing reasonable assurance that licensees are meeting the cornerstones of safety and designated crosscutting elements. The reactor inspection program, together with performance indicators (PIs), and enforcement activities form the basis for the NRC’s risk-informed, performance based regulatory framework. While human performance is a key component in the safe operation of nuclear power plants and is a designated cross-cutting element of the ROP, there is currently no direct inspection or performance indicator for assessing human performance. Rather, when human performance is identified as a substantive cross cutting element in any 1 of 3 categories (resources, organizational or personnel), it is then evaluated for common themes to determine if follow-up actions are warranted. However, variability in human performance occurs from day to day, across activities that vary in complexity, and workgroups, contributing to the uncertainty in the outcomes of performance. While some variability in human performance may be random, much of the variability may be attributed to factors that are not currently assessed. There is a need to identify and assess aspects of human performance that relate to plant safety and to develop measures that can be used to successfully assure licensee performance and indicate when additional investigation may be required. This paper presents research that establishes a technical basis for developing human performance measures. In particular, we discuss: 1) how historical data already gives some indication of connection between human performance and overall plant performance, 2) how industry led efforts to measure and model human performance and organizational factors could serve as a data source and basis for a framework, 3) how our use of modeling and ...
Date: May 1, 2006
Creator: Joe, Jeffrey; Hallbert, Bruce; Blackwood, Larry; Dudehoeffer, Donald & Hansen, Kent
Item Type: Article
Partner: UNT Libraries Government Documents Department

Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA): Application to Power Plant-Derived PM2.5

Description: This report documents progress made on the subject project during the period of September 1, 2007 through February 28, 2007. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 2, located in the Midwest. The following scenarios were completed: (1) July 19-22: POS (oxidized + SOA); (2) July 25-28: PONS (oxidized + neutralized + SOA); (3) August 8-13: P (primary); (4) August 14-15: POS; (5) August 16-17: POS (MI rats); (6) August 28-31: OS (oxidized + SOA, without primary particles); (7) September 1-4: O (oxidized, no primary particles); (8) September 6-9: S (SOA, no primary particles); and (9) September 19-22: PO (oxidized). Results indicated some biological effects with some scenarios. Also during this reporting period, the annual meeting of the TERESA Technical Advisory Committee was held at the Harvard School of Public Health in Boston. During the next reporting period, data analyses will continue for Plant 2 as well as for pooled data from all three plants. Manuscripts documenting the ...
Date: February 28, 2007
Creator: Rohr, Annette
Item Type: Report
Partner: UNT Libraries Government Documents Department

Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission

Description: The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.
Date: July 1, 2009
Creator: Mosey, G. & Vimmerstedt, L.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Record of Decision for Tank Farm Soil and INTEC Groundwater, Operable Unit 3-14

Description: This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact to groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank farm soil and groundwater at INTEC. The response action selected in this ROD is necessary to protect the public health, welfare, or the environment from actual or threatened releases of hazardous substances into the environment. Such a release or threat of release may present an imminent and substantial endangerment to public health, welfare, or the environment. The remedial actions selected in this ROD are designed to reduce the potential threats to human health and the environment to acceptable levels. In addition, DOE-ID, EPA, and DEQ (the Agencies) have determined that no action is necessary under CERCLA to protect public health, welfare, or the environment at 16 sites located outside the tank farm boundary. The purposes of the selected remedy are to (1) contain contaminated soil as the radionuclides decay in place, (2) isolate current and future workers and biological receptors from contact with contaminated soil, and (3) restore the portion of ...
Date: May 16, 2007
Creator: Cahn, L. S.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Record of Decision Remedial Alternative Selection for the C, F, K, and P-Area Coal Pile Runoff Basins (189-C, 289-F, 189-K, and 189-P)

Description: The C-, F-, K-, and P-Area Coal Pile Runoff Basins (189-C, 289-F, 189-K, and 189-P) (C-, F-, K-, and P-CPRBs) waste units are listed as Resource Conservation and Recovery Act (RCRA) 3004(u) Solid Waste Management Units/Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) units in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS). The C-, F-, K-, and P-CPRBS comprise a single operable unit which was remediated under an early removal action during the summer of 1997. Slightly elevated levels of naturally occurring metals and radionuclides in the coal-laden sediments and shallow soils were confined to the 0-1 foot interval below the basin floor. These source materials were identified as low level threat wastes. Under the Removal Site Evaluation Report/Wastewater Closure Plan for the C-, F-, K-, and P-Area Coal Pile Runoff Basins (189-C, 289-F, 189-K, and 189-P) (U) (WSRC 1997b), the coal-laden sediments and shallow soils were removed from each of the four basins during the summer of 1997. At least four feet of clean backfill was placed in each basin to restore the area to the surrounding grade. This removal action completely freed the four CPRBS of the source material for the constituents of concern and the sulfide minerals, which were reducing the pH of the infiltrate. Because the source material has been removed from the CPRBs, releases of hazardous substances will not occur from this operable unit and there is no imminent or substantial endangerment to public health, welfare, or the environment.
Date: July 1, 1998
Creator: Morgan, Randall
Item Type: Report
Partner: UNT Libraries Government Documents Department

300 Area Process Trenches Supplemental Information to the Hanford Contingency Plan (DOE/RL-93-75)

Description: The 300 Area Process Trenches are surface impoundments which were used to receive routine discharges of nonregulated process cooling water from operations in the 300 Area and dangerous waste from several research and development laboratories and the 300 Area Fuels Fabrication process. Discharges to the trenches ceased in 1994, and they were physically isolated in 1995. Remediation of the trenches is scheduled to begin during July 1997. Currently, there are no waste management activities required at the 300 Area Process Trenches and the unit does not present any significant hazards to adjacent units, personnel, or the environment. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 300 Area Process Trenches, however, during remediation, exposure, spill, fire, and industrial hazards will exist. This contingency plan addresses the emergency organization, equipment and evacuation routes pertinent to the process trenches during remediation
Date: December 31, 1997
Creator: Carlson, R.A.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Integrated Disposal Facility FY2011 Glass Testing Summary Report

Description: Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.
Date: September 29, 2011
Creator: Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M. et al.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

Description: Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had ...
Date: October 1, 2006
Creator: Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O. & Brunner, G.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Summary of Comments on DOE-Industry Cooperation by Geothermal Industry Panel

Description: The geothermal industry has matured significantly in recent years, going from early stages of prospect identification and exploration, through drilling and resource assessment, field development and power plant construction, and finally to the operation of mature geothermal fields. All of this has been done within the space of a brief quarter century. Probably no other resource industry in modem times has seen the dramatic growth and maturation as has the geothermal industry. Certainly there has been no comparable speed of development and maturation in, for example, the biomass or solar or wind or photovoltaic resource industries. And nuclear, despite double the number of decades of research and development, and infinitely greater cash outlay, is still sinking under unresolved problems of public health and safety. The enormous and rapid geothermal growth, resulting in the installation and operation of some 2,800 MW of power generation facilities, plus perhaps 2,000 thermal MW of nonelectric facilities, all within the past 25 years, has left unresolved issues in its wake. This has been unavoidable: any new and immensely successful technology inevitably pushes forward so fast on so many fronts that there is not a smooth or complete coverage of all points of importance. The Department of Energy, through its Geothermal Program, has helped the growing geothermal industry in many ways. And this has not been give-aways: the DOE geothermal dollars have enables a reliable, safe, environmentally acceptable technology to come on-line for Americans at an acceptable price at a time when energy has been needed. This is an indigenous, jobs creating, imports-reducing industry. Exports of American geothermal goods and services are being seen all across the world. However, because we are in many ways a highly mature industry, with commercial equity- and debt-financing for typical development projects, and with new interest being expressed by electric ...
Date: January 1, 1992
Creator: Koening, James B.
Item Type: Article
Partner: UNT Libraries Government Documents Department

Synergized resmethrin and corticosterone alter the chicken's response to west nile virus

Description: Debate concerning arbovirus control strategies remains contentious because concern regarding the relative risk of viral infection and environmental toxicant exposure is high but inadequately characterized. Taking this into account, mosquito control agencies employ aerial insecticides only after arbovirus surveillance data indicate high local mosquito-infection-rates. Successfully mitigating the risk of adult-mosquito-control insecticides ('adulticides') to non-target species such as humans, domestic animals, fish, beneficial insects and wildlife, while increasing their efficacy to reduce arbovirus outbreak intensity requires targeted scientific data from animal toxicity studies and environmental monitoring activities. Wild birds are an important reservoir host for WNv and are potentially exposed to insecticides used for mosquito control. However, no risk assessments have evaluated whether insecticides augment or extend the potential transmissibility of West Nile virus (WNv) in birds. In order to augment existing resmethrin risk assessments, we aimed to determine whether synergized resmethrin (SR) may cause chickens to develop an elevated or extended WN viremia and if subacute stress may affect its immunotoxicity. We distributed 40 chickens into four groups then exposed them prior to and during WNv infection with SR (50 {mu}g/l resmethrin + 150 {mu}g/l piperonyl butoxide) and/or 20 mg/I corticosterone (CORT) in their drinking-water. Corticosterone was given for 10 continuous days and SR was given for 3 alternate days starting the 3rd day of CORT exposure, then chickens were subcutaneously inoculated with WNv on the 5th day of CORT treatment. Compared to controls, CORT treatment extended and elevated viremia, enhanced WNv-specific antibody and increased the percentage of birds that shed oral virus, whereas SR treatment extended viremia, depressed WNv-specific IgG, and increased the percentage of CORT-treated birds that shed oral virus. Corticosterone and SR independently and interactively altered immunity to WNv in chickens. Further characterization of how variations in SR-exposure to and CORT levels in chickens and wild birds ...
Date: January 1, 2009
Creator: Jankowski, Mark David; Franson, J Christian; Mostl, Erich; Porter, Warren P & Hofmeister, Erik K
Item Type: Article
Partner: UNT Libraries Government Documents Department

SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

Description: This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue to address the highest-risk waste management issues by safely storing and preparing liquid waste and nuclear materials ...
Date: August 16, 2011
Creator: Mamatey, A. & Dunaway-Ackerman, J.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Measurements of actinides in soil, sediments, water and vegetation in Northern New Mexico

Description: This study was undertaken during 1991 - 1998 to identify the origin of plutonium uranium in northern New Mexico Rio Grande and tributary stream sediments. Isotopic fingerprinting techniques help distinguish radioactivity from Los Alamos National Laboratory (LANL) and from global fallout or natural sources. The geographic area covered by the study extended from the headwaters of the Rio Grande in southern Colorado to Elephant Butte Reservoir in southern New Mexico. Over 100 samples of stream channel and reservoir bottom sediments were analyzed for the atom ratios of plutonium and uranium isotopes using thermal ionization mass spectrometry (TIMS). Comparison of these ratios against those for fallout or natural sources allowed for quantification of the Laboratory impact. Of the seven major drainages crossing LANL, movement of LANL plutonium into the Rio Grande can only be traced via Los Alamos Canyon. The majority of sampled locations within and adjacent to LANL have little or no input of plutonium from the Laboratory. Samples collected upstream and distant to L A N show an average (+ s.d.) fallout 240Pu/239Pauto m ratio of 0.169 + 0.012, consistent with published worldwide global fallout values. These regional background ratios differ significantly from the 240Pu/239Pu atom ratio of 0.015 that is representative of LANL-derived plutonium entering the Rio Grande at Los Alamos Canyon. Mixing calculations of these sources indicate that the largest proportion (60% to 90%) of the plutonium in the Rio Grande sediments is from global atmospheric fallout, with an average of about 25% from the Laboratory. The LANL plutonium is identifiable intermittently along the 35-km reach of the Rio Grande to Cochiti Reservoir. The source of the LANL-derived plutonium in the Rio Grande was traced primarily to pre-1960 discharges of liquid effluents into a canyon bottom at a distance approximately 20 km upstream of the river. Plutonium ...
Date: January 1, 2002
Creator: Gallaher, B. M. (Bruce M.) & Efurd, D. W. (Deward W.)
Item Type: Article
Partner: UNT Libraries Government Documents Department

Effectiveness of Urban Shelter-in-Place. III: Commercial Districts

Description: In the event of a toxic chemical release to the atmosphere, shelter-in-place (SIP) is an emergency response option available to protect public health. This paper is the last in a three-part series that examines the effectiveness of SIP at reducing adverse health effects in communities. We model a hypothetical chemical release in an urban area, and consider SIP effectiveness in protecting occupants of commercial buildings. Building air infiltration rates are predicted from empirical data using an existing model. We consider the distribution of building air infiltration rates both with mechanical ventilation systems turned off and with the systems operating. We also consider the effects of chemical sorption to indoor surfaces and nonlinear chemical dose-response relationships. We find that commercial buildings provide effective shelter when ventilation systems are off, but that any delay in turning off ventilation systems can greatly reduce SIP effectiveness. Using a two-zone model, we find that there can be substantial benefit by taking shelter in the inner parts of a building that do not experience direct air exchange with the outdoors. Air infiltration rates vary substantially among buildings and this variation is important in quantifying effectiveness for emergency response. Community-wide health metrics, introduced in the previous papers in this series, can be applied in pre-event planning and to guide real-time emergency response.
Date: December 28, 2007
Creator: Chan, Wanyu R.; Chan, Wanyu R.; Nazaroff, William W.; Price, Phillip N. & Gadgil, Ashok J.
Item Type: Article
Partner: UNT Libraries Government Documents Department

Electrochemical arsenic remediation for rural Bangladesh

Description: Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three ...
Date: January 1, 2009
Creator: Addy, Susan Amrose
Partner: UNT Libraries Government Documents Department

Rapid and sensitive gas chromatography ion-trap mass spectrometry method for the determination of tobacco specific N-nitrosamines in secondhand smoke

Description: Tobacco-specific nitrosamines (TSNAs) are some of the most potent carcinogens in tobacco and cigarette smoke. Accurate quantification of these chemicals is needed to help assess public health risks. We developed and validated a specific and sensitive method to measure four TSNAs in both the gas- and particle-phase of secondhand smoke (SHS) using gas chromatography and ion-trap tandem mass spectrometry,. A smoking machine in an 18-m3 room-sized chamber generated relevant concentrations of SHS that were actively sampled on Teflon coated fiber glass (TCFG) filters, and passively sampled on cellulose substrates. A simple solid-liquid extraction protocol using methanol as solvent was successfully applied to both filters with high recoveries ranging from 85 to 115percent. Tandem MS parameters were optimized to obtain the best sensitivity in terms of signal to-noise ratio (S/N) for the target compounds. For each TSNA, the major fragmentation pathways as well as ion structures were elucidated and compared with previously published data. The method showed excellent performances with a linear dynamic range between 2 and 1000 ng mL-1, low detection limits (S/N> 3) of 30-300 pg.ml-1 and precision with experimental errors below 10percent for all compounds. Moreover, no interfering peaks were observed indicating a high selectivity of MS/MS without the need for a sample clean up step. The sampling and analysis method provides a sensitive and accurate tool to detect and quantify traces of TSNA in SHS polluted indoor environments.
Date: July 1, 2009
Creator: SLEIMAN, Mohamad; MADDALENA, Randy L.; GUNDEL, Lara A. & DESTAILLATS, Hugo
Item Type: Article
Partner: UNT Libraries Government Documents Department

HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN

Description: In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, ...
Date: December 1, 2003
Creator: McLachlan, John A.
Item Type: Report
Partner: UNT Libraries Government Documents Department