41 Matching Results

Search Results

Use of tRNA Gene Probes to Identify Polymorphic Loci in the Bovine Genome

Description: A 30-mer oligonucleotide probe encoding the "A box" and anticodon loop regions of a human glycine tRNA gene was used to isolate a 581bp DNA fragment from a bovine genomic DNA library. Although the cross-hybridizing segment of DNA was found not to encode any tRNA gene or pseudogene, a region with homology to the "C-element" of the "BOV-tA" type Alulike artiodactyl retroposons was identified. This cross-hybridization was determined to be the result of conserved RNA polymerase III promoter elements in the probe portion of the tRNA gene and these repetitive elements. A microsatellite repeat (TC) was also found associated with this element. Future screening for bovine tRNA genes will require the use of a) longer probes and higher stringency hybridization conditions or b) the simultaneous screening with probes from the 5' and 3' ends of the gene which avoid the conserved Pol III promoter boxes.
Date: August 1998
Creator: Shariat, Parvaneh
Partner: UNT Libraries

Analysis and expression of the cotton gene for the D-12 fatty acid desaturases 2-4 (FAD2-4)

Description: A genomic clone containing a 16.9-kb segment of cotton DNA was found to encompass a D-12 fatty acid desaturases (FAD2-4) gene. The FAD2-4 gene has a single, large intron of 2,780 bp in its 5'-untranslated region, just 12 bp upstream from the ATG initiation codon of the FAD2-4 opening reading frame. A number of prospective promoter elements, including several light-responsive sequences, occur in the 5'-flanking region. The coding region of the gene is 1155 bp with no introns, and would encode a FAD2-4 polypeptide of 384 amino acids. The putative protein had four membrane-spanning helices, hallmarks of an integral membrane protein, and would probably be located in the endoplasmic reticulum. The FAD2-4 gene is indeed a functional gene, since yeast cells transformed with a plasmid containing the coding region of the gene synthesize an appreciable amount of linoleic acid (18:2), not normally made in wild-type yeast cells. The FAD2-4 gene has many structural similarities to the cotton FAD2-3 gene that was also analyzed in this laboratory.
Date: August 2003
Creator: Park, Stacy J.
Partner: UNT Libraries

Requirements for Cell-Free Cyanide Oxidation by Pseudomonas Fluorescens NCIMB 11764

Description: The involvement of cyanide oxygenase in the metabolism of pyruvate and a-ketoglutarate-cyanohydrin was investigated and shown to occur indirectly by the consumption of free cyanide arising from the cyanohydrins via chemical dissociation. Thus, free cyanide remains the substrate, for which the enzyme displays a remarkably high affinity (Kmapp,4 mM). A model for cyanide utilization is therefore envisioned in which the substrate is initially detoxified by complexation to an appropriate ligand followed by enzymatic oxidation of cyanide arising at sublethal levels via chemical dissociation. Putative cyanide oxygenase in cell extracts consumed both oxygen and NADH in equimolar proportions during cyanide conversion to CO2 and NH3 and existed separately from an unknown heat-stable species responsible for the nonenzymatic cyanide-catalyzed consumption of oxygen. Evidence of cyanide inhibition and nonlinear kinetics between enzyme activity and protein concentration point to a complex mechanism of enzymatic substrate conversion.
Date: August 2000
Creator: Parab, Preeti
Partner: UNT Libraries

Nicotinic Acetylcholine Receptor α3 mRNA in Rat Visual System After Monocular Deprivation

Description: In situ hybridization was used to examine effects of monocular enucleation on nicotinic acetylcholine receptor subunit cc3 mRNA in the rat dLGNand visual cortex. After 28 days postoperative, there were no significant differences in α3 mRNA density between the contralateral (deprived) and ipsilateral (non-deprived) sides. The lack of obvious effects of visual deprivation on α3 mRNA density suggests that other factors, possibly intrinsic to dLGNand visual cortex, govern the postnatal expression of α3 mRNA.
Date: August 1997
Creator: Taylor, James H. (James Harvey), 1970-
Partner: UNT Libraries

Nucleotide Sequence of a Bovine Arginine Transfer RNA Gene

Description: A single plaque-pure lambda clone designated λBA84 that hybridized to a ˆ32P-labeled bovine arginine tRNA was isolated from a bovine genomic library harbored in a lambda bacteriophage vector. A 2.3-kilobase segment of this clone was found to contain an arginine transfer RNAccg gene by Southern blot hybridization analysis and dideoxyribonucleotide DNA sequencing. This gene contains the characteristic RNA polymerase III split promoter sequence found in all eukaryotic tRNAs and a potential RNA polymerase III termination site, consisting of four consecutive thymine residues, in the 3'-flanking region. Several possible cis-acting promoter elements were found within the 5'-flanking region of the sequenced gene. The function of these elements, if any, is unknown.
Date: May 1996
Creator: Eubanks, Aleida C. (Aleida Christine)
Partner: UNT Libraries

Identification and quantification of lipid metabolites in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases.

Description: The lipid composition of cotton (Gossypium hirsutum, L) fibers was determined. Fatty acid profiles revealed that linolenate and palmitate were the most abundant fatty acids present in fiber cells. Phosphatidylcholine was the predominant lipid class in fiber cells, while phosphatidylethanolamine, phosphatidylinositol and digalactosyldiacylglycerol were also prevalent. An unusually high amount of phosphatidic acid was observed in frozen cotton fibers. Phospholipase D activity assays revealed that this enzyme readily hydrolyzed radioactive phosphatidylcholine into phosphatidic acid. A profile of expressed sequence tags (ESTs) for genes involved in lipid metabolism in cotton fibers was also obtained. This EST profile along with our lipid metabolite data was used to predict lipid metabolic pathways in cotton fiber cells.
Date: May 2004
Creator: Wanjie, Sylvia W.
Partner: UNT Libraries

Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.

Description: N-Acylethanolamines (NAEs) are enriched in seed-derived tissues and are believed to be formed from the membrane phospholipid, N-acylphosphatidylethanolamine (NAPE) via the action of phospholipase D (PLD). In an effort to identify a functional NAPE-PLD in cotton seeds and seedlings, we have screened a cotton seedling cDNA (cotyledon mRNA from 48 h dark grown seedlings) library with a 1.2 kb tobacco partial cDNA fragment encoding the middle third of a putative PLDβ/γ (genbank accession, AF195614) isoform. Six plaques were isolated from the Uni-ZAP lambda library, excised as pBluescript SK(-) phagemids and subjected to nucleotide sequence analysis. Alignment of derived sequences with Arabidopsis PLD family members indicated that the cDNAs represent six different PLD gene products -three putative PLD β isoforms and three putative PLD δ isoforms. The PLD β isoforms, designated Ghpldβ1a, GHpldβ1b and a truncated Ghpldβ1b isoform. Both the full-length PLD β proteins contained characteristic HKxxxxD catalytic domains, a PC-binding domain, a PIP2-binding domain and a C2 domain. In addition both cotton PLD β isoforms had a N-terminal "SPQY" rich domain which appeared to be unique to these PLDs. The three PLD δ isoforms, designated Ghpldδ1a, Ghpldδ1b and Ghpldδ1b-2 encode full-length PLDδ proteins, and like the above PLDs, contained the characteristic catalytic and regulatory domains. The expression of Ghpldδ1b showed hydrolytic and transphosphatidylation activity toward radiolabelled phosphatidylcholine (PC) but it appears Ghpldδ1b does not utilize NAPE as a substrate to produce NAEs nor does it seem to be suppressed by NAEs.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2005
Creator: McHugh, John
Partner: UNT Libraries

Genetic Modification of Fatty Acid Profiles in Cotton

Description: The industrial uses of cottonseed oil are limited by its fatty acid composition. Genetic modification of cotton lipid profiles using seed-specific promoters could allow cotton growers to produce valuable new oils in the seed without adverse effects on fiber quality and yield, therefore making this crop more commercially profitable. Transgenic cotton callus harboring a diverged fatty acid desaturase gene (FADX) from Momordica charantia was characterized for production of alpha-eleostearic acid (conjugated double bonds: 18:3 D9 cis, 11 trans, 13 trans), not normally found in cotton. Gas chromatography (GC) in conjunction with mass spectrometry (MS) confirmed production of alpha-eleostearic acid in the transgenic cotton tissues. A second series of transformation experiments introduced the cotton fatty acid thioesterase B (FATB) cDNA, fused to the seed-specific oleosin promoter into cotton to promote the over-expression of FATB, to generate cotton with increased palmitate in the cottonseed. PCR amplification, as well as fatty acid analysis by gas chromatography, confirmed introduction of the FATB cDNA in transgenic tissues. Collectively, these results demonstrate the feasibility of manipulating the fatty acid composition in cotton via transgenic approaches and form the basis for continued efforts to create novel oils in cottonseed.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: August 2005
Creator: Rommel, Amy A.
Partner: UNT Libraries

Tobacco Phospholipase D β1: Molecular Cloning and Biochemical Characterization

Description: Transgenic tobacco plants were developed containing a partial PLD clone in antisense orientation. The PLD isoform targeted by the insertion was identified. A PLD clone was isolated from a cDNA library using the partial PLD as a probe: Nt10B1 shares 92% identity with PLDβ1 from tomato but lacks the C2 domain. PCR analysis confirmed insertion of the antisense fragment into the plants: three introns distinguished the endogenous gene from the transgene. PLD activity was assayed in leaf homogenates in PLDβ/g conditions. When phosphatidylcholine was utilized as a substrate, no significant difference in transphosphatidylation activity was observed. However, there was a reduction in NAPE hydrolysis in extracts of two transgenic plants. In one of these, a reduction in elicitor- induced PAL expression was also observed.
Date: December 2002
Creator: Hodson, Jane E.
Partner: UNT Libraries

Evidence for the Interaction of GTP with Rat Liver Glyoxalase II

Description: Glyoxalase 11, the second enzyme of the glyoxalase system, hydrolyzes S-D-lactoylglutathione (SLG) to regenerate glutathione (GSH) and liberate free D-lactate. It was found that GTP binds with Gil from rat liver and inhibits Gil activity. Preincubation experiments showed that the binding is relatively tight, since more than 15 minutes are required to release GTP from the complex following dilution. Inhibition kinetics studies indicate that GTP is a "partially competitive inhibitor"; Thus, it would appear that the binding sites for substrate (SLG) and inhibitor (GTP) are different, but spatially close. Glyoxalase 11 binds to a GTP affinity medium, and with polyacrylamide gel electrophoresis, Gil has a higher relative mobility when GTP is present (ATP has no effect). The functional consequences of GTP binding with a specific site on Gil are still unclear. It is speculated that Gil may interact with tubulin by serving as a dissociable GTP carrier, delivering GTP to the tubulinGTP binding site, and thus facilitating tubulin polymerization.
Date: December 1991
Creator: Yuan, Win-Jae
Partner: UNT Libraries

N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase

Description: N-Acylethanolamines (NAEs) are endogenous lipid metabolites that occur in a variety of dry seeds, and their levels decline rapidly during the first few hours of imbibition (Chapman et al., 1999, Plant Physiol., 120:1157-1164). Biochemical studies supported the existence of an NAE amidohydrolase activity in seeds and seedlings, and efforts were directed toward identification of DNA sequences encoding this enzyme. Mammalian tissues metabolize NAEs via an amidase enzyme designated fatty acid amide hydrolase (FAAH). Based on the characteristic amidase signature sequence in mammalian FAAH, a candidate Arabidopsis cDNA was identified and isolated by reverse transcriptase-PCR. The Arabidopsis cDNA was expressed in E. coli and the recombinant protein indeed hydrolyzed a range of NAEs to free fatty acids and ethanolamine. Kinetic parameters for the recombinant protein were consistent with those properties of the rat FAAH, supporting identification of this Arabidopsis cDNA as a FAAH homologue. Two T-DNA insertional mutant lines with disruptions in the Arabidopsis NAE amidohydrolase gene (At5g64440) were identified. The homozygous mutant seedlings were more sensitive than the wild type to exogenously applied NAE 12:0. Transgenic seedlings overexpressing the NAE amidohydrolase enzyme showed noticeably greater tolerance to NAE 12:0 than wild type seedlings. These results together provide evidence in vitro and in vivo for the molecular identification of Arabidopsis NAE amidohydrolase. Moreover, the plants with altered NAE amidohydrolase expression may provide new tools for improved understanding of the role of NAEs in germination and seedling growth.
Date: August 2004
Creator: Shrestha, Rhidaya
Partner: UNT Libraries

Analysis of Human Transfer RNA Gene Heteroclusters

Description: Two phage lambda clones encompassing human tRNA genes have been isolated from a human gene library harbored in bacteriophage lambda Charon-UA. One of the clones (designated as hLeuU) containing a 20-kb human DNA fragment was isolated and found to contain a cluster of four tRNA genes. An 8.2-kb Hindlll fragment encompassing the four tRNA genes was isolated from the 20-kb fragment and subcloned into pBR322 for restriction mapping and DNA sequence analysis. The four tRNA genes are arranged as two tandem pairs with the first pair containing a proline tRNAAGQ gene and a leucine tRNAAAQ gene and the second pair containing another proline tRNAAGG gene and a threonine tRNAuQU gene. The two pairs are separated about 3 kb from each other, and the leucine tRNAAAG gene is of opposite polarity from the other three tRNA genes. The tRNA transcription units were sequenced by a unidirectional deletion dideoxyribonucleotide chain-termination method in the M13mpl8 and 19 vectors. The coding regions of the four tRNA genes contain characteristic internal split promoter sequences and do not encode intervening sequences nor the CCA trinucleotide found in mature tRNAs. The proline t R N A A G G gene is separated from the leucine t R N A A A Q gene by a 725-bp intergenic region and the second proline t R N A A G Q is 315 bp downstream of the threonine t R N A U G U gene. The coding sequences of the two proline tRNA genes are identical. The 3'-flanking regions near the 3*-ends of these four tRNA genes have typical RNA polymerase III termination sites of at least four c o n s e c u t i v e T nt. There is no homology between the 5'-flanking regions of these genes. All four tRNA genes are potentially ...
Date: December 1986
Creator: Chang, Yung-Nien
Partner: UNT Libraries

Dna Profiling of Captive Roseate Spoonbill (Ajaia Ajaja) Populations As a Mechanism of Determining Lineage in Colonial Nesting Birds.

Description: Roseate spoonbills are colonial nesting birds with breeding grounds extending from the United States Gulf coast to the pampas of Argentina. The U.S. population suffered a severe bottleneck from 1890 to 1920. The population's recovery was slow and partially credited to migrations from Mexican rookeries, but a gene pool reduction would be expected. Five polymorphic Spoonbill autosomal short tandem repeat (STR) loci [three (GAT)n, one (AAAG)n and one (GT)n] and one Z/W-linked microsatellite exhibiting sex-specific dimorphism were isolated and characterized. The Z/W-linked STR locus accurately confirmed the sex of each bird. Allelic profiles for 51 spoonbills obtained from Dallas (Texas), Fort Worth (Texas) and Sedgwick County (Kansas) zoos revealed a non-continuous distribution of allele frequencies, consistent with the effects of a population bottleneck. Allelic frequencies also differed significantly between the isolated zoo populations. Although extra-pair copulations were suspected and difficult to document, zoos commonly used observational studies of mating pairs to determine familial relationships among adults and offspring. STR parentage analysis of recorded family relationships excluded one or both parents in 10/25 cases studied and it was further possible to identify alternative likely parents in each case. Mistaken familial relationships quickly lead to the loss of genetic variability in captive populations. Here, a decreased heterozygosity (HO) in 2nd generation captive-bred birds was observed at 3 out of 4 loci evaluated. Although these results could not be statistically validated because of the small number of individuals available for study (15 wild birds with no offspring vs. eight 2nd generation captive birds), they are considered biologically important, as decreased HO is an indicator of inbreeding and this apparent decrease occurred within two generations of removal from the wild. Collectively, the evidence obtained from this study suggests that captive spoonbill populations are experiencing rapid loss of diversity from an already depleted wild gene ...
Date: May 2002
Creator: Sawyer, Gregory M.
Partner: UNT Libraries

The Nucleotide Sequences of a Mammalian Tyrosine Transfer RNA and a Cluster of Human Transfer RNA Genes

Description: Tyrosine tRNA was isolated from bovine liver and its nucleotide sequence was determined using in vitro 32p_ labeling techniques. Several important structural features of the tRNA are: the presence of gal-Q in the first position of the anticodon, acp3U at position 20, and a pair of adjacent N,N-dimethylguanosines (residues 26 and 27). A human DNA fragment harbored in a lambda phage clone was isolated, and restriction enzyme analysis revealed the presence of three tRNA genes in a 6.0-kb BamHI subfragment. Portions of the 6.0-kb DNA fragment containing the tRNA genes were sequenced by the method of Maxam and Gilbert and analyzed for transcriptional activity in vitro using homologous cytoplasmic extracts. A threonine tRNAUGU gene exhibited high transcriptional activity dependent on its 5'- flanking sequence. The enhanced transcription is not completely inhibited by alpha-amanitin. The value of studying tRNA structure in concert with the cognate tRNA. genes is discussed.
Date: August 1986
Creator: Johnson, Gary D. (Gary Dean), 1960-
Partner: UNT Libraries

Structural Analysis of the TOL pDK1 xylGFJQK Region and Partial Characterization of the xylF and xylG Gene Products

Description: TOL plasmids encode enzymes responsible for utilization of toluene and related aromatic compounds by Pseudomonas putida, ultimately converting them to central metabolic intermediates. The nucleotide sequence for the 5.6 kb xylGFJQK region of the pDK1 TOL meta operon was determined. DNA sequence analysis revealed the presence of five open reading frames corresponding to xylG (1458 bp), xylF (846 bp), xylJ (783 bp), xylQ (936 bp) and xylK (1047 bp), encoding predicted protein products of 51.6, 31.3, 27.8, 32.8, and 36.6 kDa in size, respectively. The average G+C content of the xylLTEGFJQK region was 65.7%, somewhat higher than the 58.9% seen in the immediately upstream xylXYZ region and substantially more than the 50% G+C content reported for the upper TOL operon of this plasmid. Homology comparisons were made with genes and proteins of related catabolic plasmids. The dmpCDEFG and pWWO xylGFJQK regions exhibit consistently high levels of nucleotide and amino acid homology to pDK1 xylGFJQK throughout the entire region. In contrast, although the nucleotide sequence homology of the Acinetobacter atdCDE region to xylGFJ is high, the homology of atdFG to xylQK is markedly less. Such radical changes in homology between corresponding regions of different operons, combined with variable base and codon usage patterns within and between operons, provides additional support for the idea that the upper and lower operons encoding enzymes of aromatic pathways have evolved independently of one another and that these operons have continued to exchange genetic material with homologous expression units through a series of recombination events. Recombinant plasmids were constructed for individual expression of each of the xylGFJQK genes. HMSD (XylG) and HMSH (XylF) were partially purified and characterized with respect to substrate specificity and kinetic mechanism. Evidence was obtained suggesting that the HMSD reaction occurs via a steady state ordered mechanism or a random mechanism where ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 1999
Creator: Poulter, Melinda D.
Partner: UNT Libraries

Analysis of a Human Transfer RNA Gene Cluster and Characterization of the Transcription Unit and Two Processed Pseudogenes of Chimpanzee Triosephosphate Isomerase

Description: An 18.5-kb human DNA segment was selected from a human XCharon-4A library by hybridization to mammalian valine tRNAiAc and found to encompass a cluster of three tRNA genes. Two valine tRNA genes with anticodons of AAC and CAC, encoding the major and minor cytoplasmic valine tRNA isoacceptors, respectively, and a lysine tRNAcuu gene were identified by Southern blot hybridization and DNA sequence analysis of a 7.1-kb region of the human DNA insert. At least nine Alu family members were found interspersed throughout the human DNA fragment. The tRNA genes are accurately transcribed by RNA polymerase III in a HeLa cell extract, since the RNase Ti fingerprints of the mature-sized tRNA transcription products are consistent with the DNA sequences of the structural genes. Three members of the chimpanzee triosephosphate isomerase (TPI) gene family, the functional transcription unit and two processed pseudogenes, were characterized by genomic blotting and DNA sequence analysis. The bona fide TPI gene spans 3.5 kb with seven exons and six introns, and is the first complete hominoid TPI gene sequenced. The gene exhibits a very high identity with the human and rhesus TPI genes. In particular, the polypeptides of 248 amino acids encoded by the chimpanzee and human TPI genes are identical, although the two coding regions differ in the third codon wobble positions for five amino acids. An Alu member occurs upstream from one of the processed pseudogenes, whereas an isolated endogenous retroviral long terminal repeat (HERV-K) occurs within the structural region of the other processed pseudogene. The ages of the processed pseudogenes were estimated to be 2.6 and 10.4 million years, implying that one was inserted into the genome before the divergence of the chimpanzee and human lineages, and the other inserted into the chimpanzee genome after the divergence.
Date: August 1990
Creator: Craig, Leonard C. (Leonard Callaway)
Partner: UNT Libraries

Assembly of Pseudomonas putida Aspartate Transcarbamoylase and Possible Roles of the PyrC' Polypeptide in the Folding of the Dodecameric Enzyme

Description: Aspartate transcarbamoylase (ATCase) of Pseudomonas putida consists of two different polypeptides, PyrB and PyrC' (Schurr et al, 1995). The role of the PyrC' and the assembly of PyrB and PyrC' have been studied. The ATCase made in vitro of P.putida PyrB with P.putida PyrC', and of E.coli PyrB with P.putida PyrC ' were generated under two different conditions, denaturation and renaturation, and untreated. It was found that PyrC' plays a role in the enzymatic regulation by ATP, CTP and UTP. In addition to playing a role in substrate binding, the PyrB polypeptide is also involved in effector binding (Kumar et al., manuscript in preparation). The most energetically preferred form of the P.putida WT is a dodecamer with a molecular mass of 480 kDa. The ratio between the PyrB and the PyrC' is 1:1. In studies of nucleotide binding, it was discovered that the P.putida PyrB was phosphorylated by a protein kinase in the cell extract. In the presence of 20 mM EDTA, this phosphorylation was inhibited and the inhibition could be overcome by the addition of divalent cations such as Zn2+ and Mg2+. This result suggested that the phosphorylation reaction required divalent cations. In the CAD complex of eukaryotes, phosphorylations of the CPSase and the linker region between ATCase and DHOase did not occur in the presence of UTP and it was hypothesized (Carrey, 1993) that UTP and phosphorylation(s) regulated the conformational change in the enzyme complex. Therefore, the same idea was approached with P.putida ATCase, where it was found that 1.0 mM UTP inhibited the phosphorylation of PyrB by more than 50%. These results suggested that the regulation of the conformational change of the P.putida ATCase might be similar to that of CAD. Furthermore, peptide mapping for phosphorylation sites was performed on P.putida ATCase WT, WT --11 amino acids ...
Date: May 1999
Creator: Hongsthong, Apiradee, 1970-
Partner: UNT Libraries

Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content

Description: The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton resulted in elevated levels of palmitic acid in transgenic somatic embryos compared to control embryos. Expression of the anti-sense FatB cDNA in transgenic cotton plants produced some plants with a dwarf phenotype. These plants had significantly smaller mature leaves, all with smaller cells, suggesting that these plants may have less palmitic acid available for incorporation into extraplastidial membrane lipids during cell expansion. Thus manipulation of FatB expression in cotton directly influenced palmitic acid levels. Collectively, data presented in this dissertation support the hypothesis that there indeed is a palmitoyl-ACP thioesterase in cotton, encoded by the isolated FatB cDNA, which plays ...
Date: August 2001
Creator: Huynh, Tu T
Partner: UNT Libraries

Kinetic and Chemical Mechanism of Pyrophosphate-Dependent Phosphofructokinase

Description: Data obtained from isotope exchange at equilibrium, exchange of inorganic phosphate against forward reaction flux, and positional isotope exchange of 18O from the (βγ-bridge position of pyrophosphate to a (β-nonbridge position all indicate that the pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii has a rapid equilibrium random kinetic mechanism. All exchange reactions are strongly inhibited at high concentrations of the fructose 6-phosphate/Pi and MgPPi/Pi substrate-product pairs and weakly inhibited at high concentrations of the MgPPi/fructose 1,6-bisphosphate pair suggesting three dead-end complexes, E:F6P:Pi, E:MgPPi:Pi, and E:FBP:MgPPi. Neither back-exchange by [32p] nor positional isotope exchange of 18O-bridge-labeled pyrophosphate was observed under any conditions, suggesting that either the chemical interconversion step or a step prior to it limits the overall rate of the reaction. Reduction of the pyridoxal 5'-phosphate-inactivated enzyme with NaB[3H]4 indicates that about 7 lysines are modified in free enzyme and fructose 1,6-bisphosphate protects 2 of these from modification. The pH dependence of the enzyme-reactant dissociation constants suggests that the phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, inorganic phosphate, and Mg-pyrophosphate must be completely ionized and that lysines are present in the vicinity of the 1- and 6-phosphates of the sugar phosphate and bisphosphates probably directly coordinated to these phosphates. The pH dependence of kinetic parameters suggests that the enzyme catalyzes its reaction via general acid-base catalysis with the use of a proton shuttle. The base is required unprotonated in both reaction directions. In the direction of fructose 6-phosphate phosphorylation the base accepts a proton from the hydroxyl at C-l of F6P and then donates it to protonate the leaving phosphate. The maximum velocity of the reaction is pH independent in both reaction directions while V/K profiles exhibit pKs for binding groups (including enzyme and reactant functional groups) as well as pKs for enzyme catalytic groups. These data suggest that reactants bind only when ...
Date: December 1988
Creator: Cho, Yong Kweon
Partner: UNT Libraries

Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene

Description: Polyunsaturated fatty acids are major structural components of plant chloroplast and endoplasmic reticulum membranes. Two fatty acid desaturases (designated FAD2 and FAD3) desaturate 75% of the fatty acids in the endoplasmic reticulum. The w -6 fatty acid desaturase (FAD2) may be responsible for cold acclimation response, since polyunsaturated phospholipids are important in helping maintain plant viability at lowered temperatures. To study regulation of FAD2 gene expression in cotton, a FAD2 gene was isolated from two genomic libraries using an Arabidopsis FAD2 hybridization probe and a cotton FAD2 5¢ -flanking region gene-specific probe, respectively. A cotton FAD2 gene was found to be in two overlapping genomic clones by physical mapping and DNA sequencing. The cloned DNA fragments are identical in size to cotton FAD2 genomic DNA fragments shown by genomic blot hybridization. The cotton FAD2 coding region has 1,155 bp with no introns and would encode a putative polypeptide of 384 amino acids. The cotton FAD2 enzyme has a high identity of 75% with other plant FAD2 enzymes. The enzyme has three histidine-rich motifs that are conserved in all plant membrane desaturases. These histidine boxes may be the iron-binding domains for reduction of oxygen during desaturation. To confirm that this FAD2 enzyme is functional, a plasmid construct containing the cotton FAD2 coding region was transformed into Saccharomyces cerevisiae. The transformed yeast cells were able to catalyze the conversion of oleic acid (C18:1) into linoleic acid (C18:2). The FAD2 gene contains an intron of 2,967 bp in its 5¢ -flanking region, 11 bp upstream from the initiation codon. The intron could be essential for transcriptional regulation of FAD2 gene expression. Several putative promoter elements occur in the 5¢ -flanking region of this gene. A potential TATA basal promoter element occurs at 41 bp upstream from the cap site. Two presumptive helix-loop-helix (bHLH) ...
Date: May 2001
Creator: Kongcharoensuntorn, Wisatre
Partner: UNT Libraries

Analysis of a Cotton Gene Cluster for the Antifungal Protein Osmotin

Description: Three overlapping genomic clones covering 29.0 kilobases of cotton DNA were found to encompass a cluster of two presumptive osmotin genes (OSMI and OSMII) and two osmotin pseudogenes (OSMIII and OSMIV). A segment of 16,007 basepairs of genomic DNA was sequenced from the overlapping genomic clones (GenBank Accessions AY303690 and AF304007). The two cotton osmotin genes were found to have open reading frames of 729 basepairs without any introns, and would encode presumptive osmotin preproteins of 242 amino acids. The open reading frames of the genes are identical in sequence to two corresponding cDNA clones (GenBank Accessions AF192271 and AY301283). The two cDNA inserts are almost full-length, since one lacks codons for the four N-terminal amino acids, and the other cDNA insert lacks the coding region for the 34 N-terminal amino acids. The cotton osmotin preproteins can be identified as PR5 proteins from their similarities to the deduced amino acid sequences of other plant osmotin PR5 preproteins. The preproteins would have N-terminal signal sequences of 24 amino acids, and the mature 24 kilodalton isoforms would likely be targeted for extracellular secretion. Prospective promoter elements, including two ethylene response elements, implicated as being positive regulatory elements in the expression of a number of PR-proteins, occur in the 5'-flanking regions. The mature osmotin proteins accumulate in cotton plants treated with the inducers ethephon and hydrogen peroxide. Thus, the two cotton osmotin genes encode osmotin proteins. The coding regions of the two genes have been expressed and isolated as fusion polypeptides in a bacterial expression system. Binary constructs containing the open reading frames of the two osmotin genes under the control of the 35S CaMV promoter have been generated for eventual production of transgenic Arabidopsis and cotton plants for potential constitutive expression of the osmotin proteins for increased resistance against fungal pathogens.
Date: December 2003
Creator: Wilkinson, Jeffery Roland
Partner: UNT Libraries

Expression analysis of the fatty acid desaturase 2-4 and 2-3 genes from Gossypium hirsutum in transformed yeast cells and transgenic Arabidopsis plants.

Description: Fatty acid desaturase 2 (FAD2) enzymes are phosphatidylcholine desaturases occurring as integral membrane proteins in the endoplasmic reticulum membrane and convert monounsaturated oleic acid into polyunsaturated linoleic acid. The major objective of this research was to study the expression and function of two cotton FAD2 genes (the FAD2-3 and FAD2-4 genes) and their possible role in plant sensitivity to environmental stress, since plants may increase the polyunsaturated phospholipids in membranes under environmental stress events, such as low temperature and osmotic stress. Two FAD2 cDNA clones corresponding to the two FAD2 genes have been isolated from a cotton cDNA library, indicating both genes are truly expressed in cotton. Model yeast cells transformed with two cotton FAD2 genes were used to study the chilling sensitivity, ethanol tolerance, and growth rate of yeast cells. The expression patterns of the two FAD2 genes were analyzed by reverse transcription polymerase chain reactions (RT-PCR) and Western blot analyses in cotton plants under different treatment conditions. The coding regions of both FAD2 genes were inserted downstream from the CaMV 35S promoter in the pMDC gateway binary vector system. Five different FAD2/pMDC constructs were transformed into the Arabidopsis fad2 knockout mutant background, and multiple potential transgenic Arabidopsis plant lines harboring the cotton FAD2 genes were generated. The cotton FAD2 genes were amplified by the polymerase chain reaction (PCR) from the genomic DNAs isolated from the transgenic Arabidopsis T1 plant lines. Complementation of the putative transgenic Arabidopsis plants with the two cotton FAD2 genes was demonstrated by gas chromatography analyses of the fatty acid profiles of leaf tissues. The cellular localization of cotton FAD2-4 polypeptides with N-terminal green fluorescence protein (GFP) was visualized by confocal fluorescence microscopy. The phenotype of transgenic Arabidopsis plants transformed with the cotton FAD2-4 gene was compared to Arabidopsis knockout fad2 mutant plants and wild ...
Date: August 2008
Creator: Zhang, Daiyuan
Partner: UNT Libraries

Molecular cloning and analysis of the genes for cotton palmitoyl-acyl carrier protein thioesterase (PATE) and Δ-12 fatty acid desaturase (FAD2-3) and construction of sense and anti-sense PATE plasmid vectors for altering oilseed composition of transgenic cotton plants.

Description: A cotton PATE cDNA clone has a 1.7-kb insert with an coding region for 410 amino acids, lacking codons for the three N-terminal amino acids. The predicted amino acid sequence of the PATE preprotein has a characteristic stromal-targeting domain and a 63% identity to the Arabidopsis FatB1 thioesterase sequence. A cotton genomic clone containing a 17.4-kb DNA segment was found to encompass a palmitoyl-ACP thioesterase (FatB1) gene. The gene spans 3.6 kb with six exons and five introns. The six exons are identical in nucleotide sequence to the open reading frame of the corresponding cDNA, and would encode a preprotein of 413 amino acids. The preprotein is identified as a FatB thioesterase from its deduced amino acid sequence similarity to those of other FatB thioesterase preproteins. A 5'-flanking region of 914 bp was sequenced, with the potential promoter/enhancer elements including basic helix-loop-helix elements (E box). Alkaline blot hybridization of cotton genomic DNA suggests the presence at least two FatB1 thioesterase genes in cotton. Four plasmid constructs for both constitutive and seed-specific anti-sense RNA suppression and gene-transgene co- suppression of PATE gene expression were successfully generated. Two overlapping cotton genomic clones were found to encompass a Δ-12 fatty acid desaturase (FAD2-3) gene. The continuous FAD2-3 coding region is 1,155 bp and would encode a protein of 384 amino acids. The FAD2-3 gene has one large intron of 2,967 bp entirely within its 5'-untranslated region. Several potential promoter/enhancer elements, including several light responsive motifs occur in the 5'-flanking region. Yeast cells transformed with a plasmid construct containing the cotton FAD2-3 coding region accumulate an appreciable amount of linoleic acid (18:2), not normally present in wild-type yeast cells, indicating that the gene encodes a functional FAD2 enzyme.
Date: May 2002
Creator: Nampaisansuk, Mongkol
Partner: UNT Libraries

Quantum-Confined CdS Nanoparticles on DNA Templates

Description: As electronic devices became smaller, interest in quantum-confined semiconductor nanostructures increased. Self-assembled mesoscale semiconductor structures of II-VI nanocrystals are an especially exciting subject because of their controllable band gap and unique photophysical properties. Several preparative methods to synthesize and control the sizes of the individual nanocrystallites and the electronic and optical properties have been intensively studied. Fabrication of patterned nanostructures composed of quantum-confined nanoparticles is the next step toward practical applications. We have developed an innovative method to fabricate diverse nanostructures which relies on the size and a shape of a chosen deoxyribonucleic acid (DNA) template.
Date: May 1998
Creator: Rho, Young Gyu
Partner: UNT Libraries