7 Matching Results

Search Results

Capacity and Throughput Optimization in Multi-cell 3G WCDMA Networks

Description: User modeling enables in the computation of the traffic density in a cellular network, which can be used to optimize the placement of base stations and radio network controllers as well as to analyze the performance of resource management algorithms towards meeting the final goal: the calculation and maximization of network capacity and throughput for different data rate services. An analytical model is presented for approximating the user distributions in multi-cell third generation wideband code division multiple access (WCDMA) networks using 2-dimensional Gaussian distributions by determining the means and the standard deviations of the distributions for every cell. This model allows for the calculation of the inter-cell interference and the reverse-link capacity of the network. An analytical model for optimizing capacity in multi-cell WCDMA networks is presented. Capacity is optimized for different spreading factors and for perfect and imperfect power control. Numerical results show that the SIR threshold for the received signals is decreased by 0.5 to 1.5 dB due to the imperfect power control. The results also show that the determined parameters of the 2-dimensional Gaussian model match well with traditional methods for modeling user distribution. A call admission control algorithm is designed that maximizes the throughput in multi-cell WCDMA networks. Numerical results are presented for different spreading factors and for several mobility scenarios. Our methods of optimizing capacity and throughput are computationally efficient, accurate, and can be implemented in large WCDMA networks.
Date: December 2005
Creator: Nguyen, Son
Partner: UNT Libraries

Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada

Description: This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of the TSX tunnel at the underground research laboratory (URL) in Canada. Four different numerical models were applied, using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel, as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increases alongside the tunnel as a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis coefficient, {alpha} {approx} 0.2, a porosity of n {approx} 0.007, and a relatively low permeability of k {approx} 2 x 10{sup -22} m{sup 2}, which is consistent with the very tight, unfractured granite at the site.
Date: August 1, 2008
Creator: Rutqvist, Jonny; Borgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira et al.
Partner: UNT Libraries Government Documents Department