26 Matching Results

Search Results

Measuring Vital Signs Using Smart Phones

Description: Smart phones today have become increasingly popular with the general public for its diverse abilities like navigation, social networking, and multimedia facilities to name a few. These phones are equipped with high end processors, high resolution cameras, built-in sensors like accelerometer, orientation-sensor, light-sensor, and much more. According to comScore survey, 25.3% of US adults use smart phones in their daily lives. Motivated by the capability of smart phones and their extensive usage, I focused on utilizing them for bio-medical applications. In this thesis, I present a new application for a smart phone to quantify the vital signs such as heart rate, respiratory rate and blood pressure with the help of its built-in sensors. Using the camera and a microphone, I have shown how the blood pressure and heart rate can be determined for a subject. People sometimes encounter minor situations like fainting or fatal accidents like car crash at unexpected times and places. It would be useful to have a device which can measure all vital signs in such an event. The second part of this thesis demonstrates a new mode of communication for next generation 9-1-1 calls. In this new architecture, the call-taker will be able to control the multimedia elements in the phone from a remote location. This would help the call-taker or first responder to have a better control over the situation. Transmission of the vital signs measured using the smart phone can be a life saver in critical situations. In today's voice oriented 9-1-1 calls, the dispatcher first collects critical information (e.g., location, call-back number) from caller, and assesses the situation. Meanwhile, the dispatchers constantly face a "60-second dilemma"; i.e., within 60 seconds, they need to make a complicated but important decision, whether to dispatch and, if so, what to dispatch. The dispatchers often feel that ...
Date: December 2010
Creator: Chandrasekaran, Vikram
Partner: UNT Libraries

Non-Uniform Grid-Based Coordinated Routing in Wireless Sensor Networks

Description: Wireless sensor networks are ad hoc networks of tiny battery powered sensor nodes that can organize themselves to form self-organized networks and collect information regarding temperature, light, and pressure in an area. Though the applications of sensor networks are very promising, sensor nodes are limited in their capability due to many factors. The main limitation of these battery powered nodes is energy. Sensor networks are expected to work for long periods of time once deployed and it becomes important to conserve the battery life of the nodes to extend network lifetime. This work examines non-uniform grid-based routing protocol as an effort to minimize energy consumption in the network and extend network lifetime. The entire test area is divided into non-uniformly shaped grids. Fixed source and sink nodes with unlimited energy are placed in the network. Sensor nodes with full battery life are deployed uniformly and randomly in the field. The source node floods the network with only the coordinator node active in each grid and the other nodes sleeping. The sink node traces the same route back to the source node through the same coordinators. This process continues till a coordinator node runs out of energy, when new coordinator nodes are elected to participate in routing. Thus the network stays alive till the link between the source and sink nodes is lost, i.e., the network is partitioned. This work explores the efficiency of the non-uniform grid-based routing protocol for different node densities and the non-uniform grid structure that best extends network lifetime.
Date: August 2008
Creator: Kadiyala, Priyanka
Partner: UNT Libraries

Effective and Accelerated Informative Frame Filtering in Colonoscopy Videos Using Graphic Processing Units

Description: Colonoscopy is an endoscopic technique that allows a physician to inspect the mucosa of the human colon. Previous methods and software solutions to detect informative frames in a colonoscopy video (a process called informative frame filtering or IFF) have been hugely ineffective in (1) covering the proper definition of an informative frame in the broadest sense and (2) striking an optimal balance between accuracy and speed of classification in both real-time and non real-time medical procedures. In my thesis, I propose a more effective method and faster software solutions for IFF which is more effective due to the introduction of a heuristic algorithm (derived from experimental analysis of typical colon features) for classification. It contributed to a 5-10% boost in various performance metrics for IFF. The software modules are faster due to the incorporation of sophisticated parallel-processing oriented coding techniques on modern microprocessors. Two IFF modules were created, one for post-procedure and the other for real-time. Code optimizations through NVIDIA CUDA for GPU processing and/or CPU multi-threading concepts embedded in two significant microprocessor design philosophies (multi-core design and many-core design) resulted a 5-fold acceleration for the post-procedure module and a 40-fold acceleration for the real-time module. Some innovative software modules, which are still in testing phase, have been recently created to exploit the power of multiple GPUs together.
Date: August 2010
Creator: Karri, Venkata Praveen
Partner: UNT Libraries

Models to Combat Email Spam Botnets and Unwanted Phone Calls

Description: With the amount of email spam received these days it is hard to imagine that spammers act individually. Nowadays, most of the spam emails have been sent from a collection of compromised machines controlled by some spammers. These compromised computers are often called bots, using which the spammers can send massive volume of spam within a short period of time. The motivation of this work is to understand and analyze the behavior of spammers through a large collection of spam mails. My research examined a the data set collected over a 2.5-year period and developed an algorithm which would give the botnet features and then classify them into various groups. Principal component analysis was used to study the association patterns of group of spammers and the individual behavior of a spammer in a given domain. This is based on the features which capture maximum variance of information we have clustered. Presence information is a growing tool towards more efficient communication and providing new services and features within a business setting and much more. The main contribution in my thesis is to propose the willingness estimator that can estimate the callee's willingness without his/her involvement, the model estimates willingness level based on call history. Finally, the accuracy of the proposed willingness estimator is validated with the actual call logs.
Date: May 2008
Creator: Husna, Husain
Partner: UNT Libraries

Automatic Extraction of Highlights from a Baseball Video Using HMM and MPEG-7 Descriptors

Description: In today’s fast paced world, as the number of stations of television programming offered is increasing rapidly, time accessible to watch them remains same or decreasing. Sports videos are typically lengthy and they appeal to a massive crowd. Though sports video is lengthy, most of the viewer’s desire to watch specific segments of the video which are fascinating, like a home-run in a baseball or goal in soccer i.e., users prefer to watch highlights to save time. When associated to the entire span of the video, these segments form only a minor share. Hence these videos need to be summarized for effective presentation and data management. This thesis explores the ability to extract highlights automatically using MPEG-7 features and hidden Markov model (HMM), so that viewing time can be reduced. Video is first segmented into scene shots, in which the detection of the shot is the fundamental task. After the video is segmented into shots, extraction of key frames allows a suitable representation of the whole shot. Feature extraction is crucial processing step in the classification, video indexing and retrieval system. Frame features such as color, motion, texture, edges are extracted from the key frames. A baseball highlight contains certain types of scene shots and these shots follow a particular transition pattern. The shots are classified as close-up, out-field, base and audience. I first try to identify the type of the shot using low level features extracted from the key frames of each shot. For the identification of the highlight I use the hidden Markov model using the transition pattern of the shots in time domain. Experimental results suggest that with reasonable accuracy highlights can be extracted from the video.
Date: May 2011
Creator: Saudagar, Abdullah Naseer Ahmed
Partner: UNT Libraries

Kalman Filtering Approach to Optimize OFDM Data Rate

Description: This study is based on applying a non-linear mapping method, here the unscented Kalman filter; to estimate and optimize data rate resulting from the arrival rate having a Poisson distribution in an orthogonal frequency division multiplexing (OFDM) transmission system. OFDM is an emerging multi-carrier modulation scheme. With the growing need for quality of service in wireless communications, it is highly necessary to optimize resources in such a way that the overall performance of the system models should rise while keeping in mind the objective to achieve high data rate and efficient spectral methods in the near future. In this study, the results from the OFDM-TDMA transmission system have been used to apply cross-layer optimization between layers so as to treat different resources between layers simultaneously. The main controller manages the transmission of data between layers using the multicarrier modulation techniques. The unscented Kalman filter is used here to perform nonlinear mapping by estimating and optimizing the data rate, which result from the arrival rate having a Poisson distribution.
Date: August 2011
Creator: Wunnava, Sashi Prabha
Partner: UNT Libraries

System and Methods for Detecting Unwanted Voice Calls

Description: Voice over IP (VoIP) is a key enabling technology for the migration of circuit-switched PSTN architectures to packet-based IP networks. However, this migration is successful only if the present problems in IP networks are addressed before deploying VoIP infrastructure on a large scale. One of the important issues that the present VoIP networks face is the problem of unwanted calls commonly referred to as SPIT (spam over Internet telephony). Mostly, these SPIT calls are from unknown callers who broadcast unwanted calls. There may be unwanted calls from legitimate and known people too. In this case, the unwantedness depends on social proximity of the communicating parties. For detecting these unwanted calls, I propose a framework that analyzes incoming calls for unwanted behavior. The framework includes a VoIP spam detector (VSD) that analyzes incoming VoIP calls for spam behavior using trust and reputation techniques. The framework also includes a nuisance detector (ND) that proactively infers the nuisance (or reluctance of the end user) to receive incoming calls. This inference is based on past mutual behavior between the calling and the called party (i.e., caller and callee), the callee's presence (mood or state of mind) and tolerance in receiving voice calls from the caller, and the social closeness between the caller and the callee. The VSD and ND learn the behavior of callers over time and estimate the possibility of the call to be unwanted based on predetermined thresholds configured by the callee (or the filter administrators). These threshold values have to be automatically updated for integrating dynamic behavioral changes of the communicating parties. For updating these threshold values, I propose an automatic calibration mechanism using receiver operating characteristics curves (ROC). The VSD and ND use this mechanism for dynamically updating thresholds for optimizing their accuracy of detection. In addition to unwanted calls ...
Date: December 2007
Creator: Kolan, Prakash
Partner: UNT Libraries

Comparison and Evaluation of Existing Analog Circuit Simulator using Sigma-Delta Modulator

Description: In the world of VLSI (very large scale integration) technology, there are many different types of circuit simulators that are used to design and predict the circuit behavior before actual fabrication of the circuit. In this thesis, I compared and evaluated existing circuit simulators by considering standard benchmark circuits. The circuit simulators which I evaluated and explored are Ngspice, Tclspice, Winspice (open source) and Spectre® (commercial). I also tested standard benchmarks using these circuit simulators and compared their outputs. The simulators are evaluated using design metrics in order to quantify their performance and identify efficient circuit simulators. In addition, I designed a sigma-delta modulator and its individual components using the analog behavioral language Verilog-A. Initially, I performed simulations of individual components of the sigma-delta modulator and later of the whole system. Finally, CMOS (complementary metal-oxide semiconductor) transistor-level circuits were designed for the differential amplifier, operational amplifier and comparator of the modulator.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2006
Creator: Ale, Anil Kumar
Partner: UNT Libraries

A Multi-Variate Analysis of SMTP Paths and Relays to Restrict Spam and Phishing Attacks in Emails

Description: The classifier discussed in this thesis considers the path traversed by an email (instead of its content) and reputation of the relays, features inaccessible to spammers. Groups of spammers and individual behaviors of a spammer in a given domain were analyzed to yield association patterns, which were then used to identify similar spammers. Unsolicited and phishing emails were successfully isolated from legitimate emails, using analysis results. Spammers and phishers are also categorized into serial spammers/phishers, recent spammers/phishers, prospective spammers/phishers, and suspects. Legitimate emails and trusted domains are classified into socially close (family members, friends), socially distinct (strangers etc), and opt-outs (resolved false positives and false negatives). Overall this classifier resulted in far less false positives when compared to current filters like SpamAssassin, achieving a 98.65% precision, which is well comparable to the precisions achieved by SPF, DNSRBL blacklists.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2006
Creator: Palla, Srikanth
Partner: UNT Libraries

An investigation into graph isomorphism based zero-knowledge proofs.

Description: Zero-knowledge proofs protocols are effective interactive methods to prove a node's identity without disclosing any additional information other than the veracity of the proof. They are implementable in several ways. In this thesis, I investigate the graph isomorphism based zero-knowledge proofs protocol. My experiments and analyses suggest that graph isomorphism can easily be solved for many types of graphs and hence is not an ideal solution for implementing ZKP.
Date: December 2009
Creator: Ayeh, Eric
Partner: UNT Libraries

Study of the effects of background and motion camera on the efficacy of Kalman and particle filter algorithms.

Description: This study compares independent use of two known algorithms (Kalmar filter with background subtraction and Particle Filter) that are commonly deployed in object tracking applications. Object tracking in general is very challenging; it presents numerous problems that need to be addressed by the application in order to facilitate its successful deployment. Such problems range from abrupt object motion, during tracking, to a change in appearance of the scene and the object, as well as object to scene occlusions, and camera motion among others. It is important to take into consideration some issues, such as, accounting for noise associated with the image in question, ability to predict to an acceptable statistical accuracy, the position of the object at a particular time given its current position. This study tackles some of the issues raised above prior to addressing how the use of either of the aforementioned algorithm, minimize or in some cases eliminate the negative effects
Date: August 2009
Creator: Morita, Yasuhiro
Partner: UNT Libraries

Design and Implementation of Communication Platform for Autonomous Decentralized Systems

Description: This thesis deals with the decentralized autonomous system, in which individual nodes acting like peers, communicate and participate in collaborative tasks and decision making processes. An experimental test-bed is created using four Garcia robots. The robots act like peers and interact with each other using user datagram protocol (UDP) messages. Each robot continuously monitors for messages coming from other robots and respond accordingly. Each robot broadcasts its location to all the other robots within its vicinity. Robots do not have built-in global positioning system (GPS). So, an indoor localization method based on signal strength is developed to estimate robot's position. The signal strength that the robot gets from the nearby wireless access points is used to calculate the robot's position. Trilateration and fingerprint are some of the indoor localization methods used for this purpose. The communication functionality of the decentralized system has been tested and verified in the autonomous systems laboratory.
Date: December 2010
Creator: Gottipati, Naga Sravani
Partner: UNT Libraries

Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature.

Description: Optical current sensors (OCSs) are initially developed to measure relatively large current over a wide range of frequency band. They are also used as protective devices in the event a fault occurs due to a short circuit, in the power generation and distribution industries. The basic principal used in OCS is the Faraday effect. When a light guiding faraday medium is placed in a magnetic field which is produced by the current flowing in the conductor around the magnetic core, the plane of polarization of the linearly polarized light is rotated. The angle of rotation is proportional to the magnetic field strength, proportionality constant and the interaction length. The proportionality constant is the Verdet constant V (λ, T), which is dependent on both temperature and wavelength of the light. Opto electrical methods are used to measure the angle of rotation of the polarization plane. By measuring the angle the current flowing in the current carrying conductor can be calculated. But the accuracy of the OCS is lost of the angle of rotation of the polarization plane is dependent on the Verdet constant, apart from the magnetic field strength. As temperature increases the Verdet constant decreases, so the angle of rotation decreases. To compensate the effect of temperature on the OCS, a new method has been proposed. The current and temperature are measured with the help of a duel frequency method. To detect the line current in the conductor or coil, a small signal from the line current is fed to the reference of the lock in. To detect the temperature, the coil is excited with an electrical signal of a frequency different from the line frequency, and a small sample of this frequency signal is applied to the reference of the lock in. The temperature and current readings obtained are ...
Date: December 2008
Creator: Karri, Avinash
Partner: UNT Libraries

Automated Defense Against Worm Propagation.

Description: Worms have caused significant destruction over the last few years. Network security elements such as firewalls, IDS, etc have been ineffective against worms. Some worms are so fast that a manual intervention is not possible. This brings in the need for a stronger security architecture which can automatically react to stop worm propagation. The method has to be signature independent so that it can stop new worms. In this thesis, an automated defense system (ADS) is developed to automate defense against worms and contain the worm to a level where manual intervention is possible. This is accomplished with a two level architecture with feedback at each level. The inner loop is based on control system theory and uses the properties of PID (proportional, integral and differential controller). The outer loop works at the network level and stops the worm to reach its spread saturation point. In our lab setup, we verified that with only inner loop active the worm was delayed, and with both loops active we were able to restrict the propagation to 10% of the targeted hosts. One concern for deployment of a worm containment mechanism was degradation of throughput for legitimate traffic. We found that with proper intelligent algorithm we can minimize the degradation to an acceptable level.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2005
Creator: Patwardhan, Sudeep
Partner: UNT Libraries

The Effect of Mobility on Wireless Sensor Networks

Description: Wireless sensor networks (WSNs) have gained attention in recent years with the proliferation of the micro-electro-mechanical systems, which has led to the development of smart sensors. Smart sensors has brought WSNs under the spotlight and has created numerous different areas of research such as; energy consumption, convergence, network structures, deployment methods, time delay, and communication protocols. Convergence rates associated with information propagations of the networks will be questioned in this thesis. Mobility is an expensive process in terms of the associated energy costs. In a sensor network, mobility has significant overhead in terms of closing old connections and creating new connections as mobile sensor nodes move from one location to another. Despite these drawbacks, mobility helps a sensor network reach an agreement more quickly. Adding few mobile nodes to an otherwise static network will significantly improve the network’s ability to reach consensus. This paper shows the effect of the mobility on convergence rate of the wireless sensor networks, through Eigenvalue analysis, modeling and simulation.
Date: August 2014
Creator: Hasir, Ibrahim
Partner: UNT Libraries

Baseband Noise Suppression in Ofdm Using Kalman Filter

Description: As the technology is advances the reduced size of hardware gives rise to an additive 1/f baseband noise. This additive 1/f noise is a system noise generated due to miniaturization of hardware and affects the lower frequencies. Though 1/f noise does not show much effect in wide band channels because of its nature to affect only certain frequencies, 1/f noise becomes a prominent in OFDM communication systems where narrow band channels are used. in this thesis, I study the effects of 1/f noise on the OFDM systems and implement algorithms for estimation and suppression of the noise using Kalman filter. Suppression of the noise is achieved by subtracting the estimated noise from the received noise. I show that the performance of the system is considerably improved by applying the 1/f noise suppression.
Date: May 2012
Creator: Rodda, Lasya
Partner: UNT Libraries

Case Studies to Learn Human Mapping Strategies in a Variety of Coarse-Grained Reconfigurable Architectures

Description: Computer hardware and algorithm design have seen significant progress over the years. It is also seen that there are several domains in which humans are more efficient than computers. For example in image recognition, image tagging, natural language understanding and processing, humans often find complicated algorithms quite easy to grasp. This thesis presents the different case studies to learn human mapping strategy to solve the mapping problem in the area of coarse-grained reconfigurable architectures (CGRAs). To achieve optimum level performance and consume less energy in CGRAs, place and route problem has always been a major concern. Making use of human characteristics can be helpful in problems as such, through pattern recognition and experience. Therefore to conduct the case studies a computer mapping game called UNTANGLED was analyzed as a medium to convey insights of human mapping strategies in a variety of architectures. The purpose of this research was to learn from humans so that we can come up with better algorithms to outperform the existing algorithms. We observed how human strategies vary as we present them with different architectures, different architectures with constraints, different visualization as well as how the quality of solution changes with experience. In this work all the case studies obtained from exploiting human strategies provide useful feedback that can improve upon existing algorithms. These insights can be adapted to find the best architectural solution for a particular domain and for future research directions for mapping onto mesh-and- stripe based CGRAs.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Malla, Tika Kumari
Partner: UNT Libraries

Improving the Gameplay Experience and Guiding Bottom Players in an Interactive Mapping Game

Description: In game based learning, motivating the players to learn by providing them a desirable gameplay experience is extremely important. However, it's not an easy task considering the quality of today's commercial non-educational games. Throughout the gameplay, the player should neither get overwhelmed nor under-challenged. The best way to do so is to monitor the player's actions in the game because these actions can tell the reason behind the player's performance. They can also tell about the player's lacking competencies or knowledge. Based on this information, in-game educational interventions in the form of hints can be provided to the player. The success of such games depends on their interactivity, motivational outlook and thus player retention. UNTANGLED is an online mapping game based on crowd-sourcing, developed by Reconfigurable Computing Lab, UNT for the mapping problem of CGRAs. It is also an educational game for teaching the concepts of reconfigurable computing. This thesis performs qualitative comparative analysis on gameplays of low performing players of UNTANGLED. And the implications of this analysis are used to provide recommendations for improving the gameplay experience for these players by guiding them. The recommendations include strategies to reach a high score and a compact solution, hints in the form of preset patterns and a clustering based approach.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Ambekar, Kiran
Partner: UNT Libraries

Development of Indium Oxide Nanowires as Efficient Gas Sensors

Description: Crystalline indium oxide nanowires were synthesized following optimization of growth parameters. Oxygen vacancies were found to impact the optical and electronic properties of the as-grown nanowires. Photoluminescence measurements showed a strong U.V emission peak at 3.18 eV and defect peaks in the visible region at 2.85 eV, 2.66 eV and 2.5 eV. The defect peaks are attributed to neutral and charged states of oxygen vacancies. Post-growth annealing in oxygen environment and passivation with sulphur are shown to be effective in reducing the intensity of the defect induced emission. The as-grown nanowires connected in an FET type of configuration shows n-type conductivity. A single indium oxide nanowire with ohmic contacts was found to be sensitive to gas molecules adsorbed on its surface.
Date: December 2011
Creator: Gali, Pradeep
Partner: UNT Libraries

Development of Silicon Nanowire Field Effect Transistors

Description: An economically reliable technique for the synthesis of silicon nanowire was developed using silicon chloride as source material. The 30-40 micron long nanowires were found to have diameters ranging from 40 – 100 nm. An amorphous oxide shell covered the nanowires, post-growth. Raman spectroscopy confirmed the composition of the shell to be silicon-dioxide. Photoluminescence measurements of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell. Etching of the oxide shell was found to decrease the intensity of green emission. n-type doping of the silicon nanowires was achieved using antimony as the dopant. The maximum dopant concentration was achieved by post-growth diffusion. Intrinsic nanowire parameters were determined by implementation of the as-grown and antimony doped silicon nanowires in field effect transistor configuration.
Date: December 2011
Creator: Nukala, Prathyusha
Partner: UNT Libraries

Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Description: Conventional pattern recognition systems have two components: feature analysis and pattern classification. For any object in an image, features could be considered as the major characteristic of the object either for object recognition or object tracking purpose. Features extracted from a training image, can be used to identify the object when attempting to locate the object in a test image containing many other objects. To perform reliable scene analysis, it is important that the features extracted from the training image are detectable even under changes in image scale, noise and illumination. Scale invariant feature has wide applications such as image classification, object recognition and object tracking in the image processing area. In this thesis, color feature and SIFT (scale invariant feature transform) are considered to be scale invariant feature. The classification, recognition and tracking result were evaluated with novel evaluation criterion and compared with some existing methods. I also studied different types of scale invariant feature for the purpose of solving scene analysis problems. I propose probabilistic models as the foundation of analysis scene scenario of images. In order to differential the content of image, I develop novel algorithms for the adaptive combination for multiple features extracted from images. I demonstrate the performance of the developed algorithm on several scene analysis tasks, including object tracking, video stabilization, medical video segmentation and scene classification.
Date: August 2011
Creator: Shen, Yao
Partner: UNT Libraries

Socioscope: Human Relationship and Behavior Analysis in Mobile Social Networks

Description: The widely used mobile phone, as well as its related technologies had opened opportunities for a complete change on how people interact and build relationship across geographic and time considerations. The convenience of instant communication by mobile phones that broke the barrier of space and time is evidently the key motivational point on why such technologies so important in people's life and daily activities. Mobile phones have become the most popular communication tools. Mobile phone technology is apparently changing our relationship to each other in our work and lives. The impact of new technologies on people's lives in social spaces gives us the chance to rethink the possibilities of technologies in social interaction. Accordingly, mobile phones are basically changing social relations in ways that are intricate to measure with any precision. In this dissertation I propose a socioscope model for social network, relationship and human behavior analysis based on mobile phone call detail records. Because of the diversities and complexities of human social behavior, one technique cannot detect different features of human social behaviors. Therefore I use multiple probability and statistical methods for quantifying social groups, relationships and communication patterns, for predicting social tie strengths and for detecting human behavior changes and unusual consumption events. I propose a new reciprocity index to measure the level of reciprocity between users and their communication partners. The experimental results show that this approach is effective. Among other applications, this work is useful for homeland security, detection of unwanted calls (e.g., spam), telecommunication presence, and marketing. In my future work I plan to analyze and study the social network dynamics and evolution.
Date: August 2010
Creator: Zhang, Huiqi
Partner: UNT Libraries

Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles

Description: Recently, there is a great interest in moving object tracking in the fields of security and surveillance. Object recognition under partial occlusion is the core of any object tracking system. This thesis presents an automatic and real-time color object-recognition system which is not only robust but also occlusion tolerant. The intended use of the system is to recognize and track external vehicles entered inside a secured area like a school campus or any army base. Statistical morphological skeleton is used to represent the visible shape of the vehicle. Simple curve matching and different feature based matching techniques are used to recognize the segmented vehicle. Features of the vehicle are extracted upon entering the secured area. The vehicle is recognized from either a digital video frame or a static digital image when needed. The recognition engine will help the design of a high performance tracking system meant for remote video surveillance.
Date: December 2007
Creator: Pati, Nishikanta
Partner: UNT Libraries

Inferring Social and Internal Context Using a Mobile Phone

Description: This dissertation is composed of research studies that contribute to three research areas including social context-aware computing, internal context-aware computing, and human behavioral data mining. In social context-aware computing, four studies are conducted. First, mobile phone user calling behavioral patterns are characterized in forms of randomness level where relationships among them are then identified. Next, a study is conducted to investigate the relationship between the calling behavior and organizational groups. Third, a method is presented to quantitatively define mobile social closeness and social groups, which are then used to identify social group sizes and scaling ratio. Last, based on the mobile social grouping framework, the significant role of social ties in communication patterns is revealed. In internal context-aware computing, two studies are conducted where the notions of internal context are intention and situation. For intentional context, the goal is to sense the intention of the user in placing calls. A model is thus presented for predicting future calls envisaged as a call predicted list (CPL), which makes use of call history to build a probabilistic model of calling behavior. As an incoming call predictor, CPL is a list of numbers/contacts that are the most likely to be the callers within the next hour(s), which is useful for scheduling and daily planning. As an outgoing call predictor, CPL is generated as a list of numbers/contacts that are the most likely to be dialed when the user attempts to make an outgoing call (e.g., by flipping open or unlocking the phone). This feature helps save time from having to search through a lengthy phone book. For situational context, a model is presented for sensing the user's situation (e.g., in a library, driving a car, etc.) based on embedded sensors. The sensed context is then used to switch the phone into a suitable ...
Date: December 2009
Creator: Phithakkitnukoon, Santi
Partner: UNT Libraries