Search Results

Preparation and characterization of praseodymium oxide films and powders.

Description: Nanocrystalline praseodymium oxide films have been successfully generated on stainless steel substrates. The electrochemical deposition was performed in the cathode compartment of a divided electrochemical cell with a regular three-electrode configuration. The green films obtained by electrodeposition were then annealed at high temperatures for 1-3 hours. X-ray diffraction revealed the fluorite structure of Pr6O11 and the crystallite size was calculated. X-ray photoelectron spectroscopy was employed to study the composition of the oxide films and also the oxidation state of Pr. Scanning electron microscopy was utilized to study the surface texture and microstructure of deposits. Fourier transform infrared spectrometery was used to investigate the composition of the films. The effects of different conditions on the green films were also studied such as different pH values of the electrolyte solution, different deposition modes, different supporting electrolytes and different applied current densities. Sintering experiments were conducted to investigate the properties of the green films. Praseodymium oxide powders were also successfully prepared by combining electrochemical methods with sintering processes. The praseodymium oxide powders were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The crystallite sizes of the powders were evaluated.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2004
Creator: Shang, Yajuan
Partner: UNT Libraries

Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides

Description: Examinations of the effects of (a.) alkyl carbon chain length and (b.) perfluorination of acyl chlorides; propionyl chloride, butyryl chloride, valeroyl chloride, and perfluorinated acyl chlorides; perfluoropropionyl chloride and perfluorobutyryl chloride, are reported and compared using CP-FTMW spectroscopy. All of these molecules are already published in various journals except for valeroyl chloride. The chapters are organized by molecule alkyl chain length and include some background theory. Conformational stability, internal rotation, helicity, and ionic character of the C-Cl bond via the nuclear electric quadrupole coupling constant (χzz) are analyzed. Results show syn, syn-anti/syn-gauche, and syn-anti-anti/syn-gauche-anti stable conformations. Internal rotation was only seen in propionyl chloride. Helicity was not observed. (χzz) was observed to be inert to alkyl chain length, ~ 60 MHz and ~ 65 MHz for the nonfluorinated and fluorinated acyl chlorides. Partial fluorination and varying functional groups are recommended.
Date: August 2011
Creator: Powoski, Robert A.
Partner: UNT Libraries

Incorporating Electrochemistry and X-ray Diffraction Experiments Into an Undergraduate Instrumental Analysis Course

Description: Experiments were designed for an undergraduate instrumental analysis laboratory course, two in X-ray diffraction and two in electrochemistry. Those techniques were chosen due their underrepresentation in the Journal of Chemical Education. Paint samples (experiment 1) and pennies (experiment 2) were characterized using x-ray diffraction to teach students how to identify different metals and compounds in a sample. in the third experiment, copper from a penny was used to perform stripping analyses at different deposition times. As the deposition time increases, the current of the stripping peak also increases. the area under the stripping peak gives the number of coulombs passed, which allows students to calculate the mass of copper deposited on the electrode surface. the fourth experiment was on the effects of variable scan rates on a chemical system. This type of experiment gives valuable mechanistic information about the chemical system being studied.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2012
Creator: Molina, Cathy
Partner: UNT Libraries

Effects of Web-based Instruction in High School Chemistry.

Description: The intent of this study is to identify correlations that might exist between Web-based instruction and higher assessment scores in secondary education. The study framework was held within the confines of a public high school chemistry classroom. Within this population there were students identified as gifted and talented (GT) as well as those without this designation. These two classifications were examined for statistically higher assessment scores using a two-tailed t-test. Results indicated that females outperformed males on pre- and post- instructional unit tests. All subgroups improved their logical-thinking skills and exhibited positive attitudes towards Web-based instruction. In general, Web-based instruction proved beneficial to improving classroom performance of all GT and non-GT groups as compared to traditional classroom instruction.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2003
Creator: Stratton, Eric W.
Partner: UNT Libraries

Study of Copper Electrodeposition on Ruthenium Oxide Surfaces and Bimetallic Corrosion of Copper/Ruthenium in Gallic Acid Solution

Description: Ruthenium, proposed as a new candidate of diffusion barrier, has three different kinds of oxides, which are native oxide, electrochemical reversible oxide and electrochemical irreversible oxide. Native oxide was formed by naturally exposed to air. Electrochemical reversible oxide was formed at lower anodic potential region, and irreversible oxides were formed at higher anodic potential region. In this study, we were focusing on the effect of copper electrodeposition on each type of oxides. From decreased charge of anodic stripping peaks and underpotential deposition (UPD) waves in cyclic voltammetry (CV), efficiency of Cu deposition dropped off indicating that interfacial binding strength between Cu and Ru oxides was weakened when the Ru surface was covered with irreversible oxide and native oxide. Also, Cu UPD was hindered by both O2 and H2 plasma modified Ru surfaces because the binding strength between Cu and Ru was weakened by O2 and H2 plasma treatment. Cu/Ru and Cu/Ta bimetallic corrosion was studied for understanding the corrosion behavior between diffusion barrier (Ta and Ru) and Cu interconnects under the post chemical mechanical planarization (CMP) process in semiconductor fabrication. Gallic acid is used in post CMP slurry solution and is known well as antioxidant which is supposed to oxidize itself to prevent other species from oxidizing. However, in this study under the observation of Cu microdot corrosion test, copper was corroded only in gallic acid at specific pH region of alkaline condition which is close to the pH region for post CMP solution formula. With different pH alkaline condition, gallic acid formed different oxidized products which are characterized by cyclic voltammetry and UV-Vis spectroscopy. Therefore, the specific oxidized product from particular pH region condition caused the Cu corrosion. Also, the corrosion rate of Cu microdots was influenced by substrate effect (Cu/Ru and Cu/Ta) and ambient control, which was included ...
Date: August 2007
Creator: Yu, Kyle K.
Partner: UNT Libraries

Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces

Description: Copper under-potential deposition (UPD) on iridium was studied due to important implications it presents to the semiconductor industry. Copper UPD allows controlled superfilling on sub-micrometer trenches; iridium has characteristics to prevent copper interconnect penetration into the surrounding dielectric. Copper UPD is not favored on iridium oxides but data shows copper over-potential deposition when lower oxidation state Ir oxide is formed. Effect of anions in solution on silver UPD at platinum (Pt) electrodes was studied with the electrochemical quartz crystal microbalance. Silver UPD forms about one monolayer in the three different electrolytes employed. When phosphoric acid is used, silver oxide growth is identified due to presence of low coverage hydrous oxide species at potentials prior to the monolayer oxide region oxide region.
Date: August 2006
Creator: Flores Araujo, Sarah Cecilia
Partner: UNT Libraries

Copper Electrodeposition on Iridium, Ruthenium and Its Conductive Oxide Substrate

Description: The aim of this thesis was to investigate the physical and electrochemical properties of sub monolayer and monolayer of copper deposition on the polycrystalline iridium, ruthenium and its conductive oxide. The electrochemical methods cyclic voltammetry (CV) and chronocoulometry were used to study the under potential deposition. The electrochemical methods to oxidize the ruthenium metal are presented, and the electrochemical properties of the oxide ruthenium are studied. The full range of CV is presented in this thesis, and the distances between the stripping bulk peak and stripping UPD peak in various concentration of CuSO4 on iridium, ruthenium and its conductive oxide are shown, which yields thermodynamic data on relative difference of bonding strength between Cu-Ru/Ir atoms and Cu-Cu atoms. The monolayer of UPD on ruthenium is about 0.5mL, and on oxidized ruthenium is around 0.9mL to 1.0mL. The conductive oxide ruthenium presents the similar properties of ruthenium metal. The pH effect of stripping bulk peak and stripping UPD peak of copper deposition on ruthenium and oxide ruthenium was investigated. The stripping UPD peak and stripping bulk peak disappeared after the pH ≥ 3 on oxidized ruthenium electrode, and a new peak appeared, which means the condition of pH is very important. The results show that the Cl- , SO42- , Br- will affect the position of stripping bulk peak and stripping UPD peak: the stripping bulk peak will shift and decrease if the concentration of halide ions is increasing, and the monolayer of UPD will increase at the same time.
Date: December 2003
Creator: Huang, Long
Partner: UNT Libraries

Interfacial Study of Copper Electrodeposition with the Electrochemical Quartz Crystal Microbalance (EQCM)

Description: The electrochemical quartz crystal microbalance (EQCM) has been proven an effective mean of monitoring up to nano-scale mass changes related to electrode potential variations at its surface. The principles of operation are based on the converse piezoelectric response of quartz crystals to mass variations on the crystal surface. In this work, principles and operations of the EQCM and piezo-electrodes are discussed. A conductive oxide, ruthenium oxide (RuO2) is a promising material to be used as a diffusion barrier for metal interconnects. Characterization of copper underpotential deposition (UPD) on ruthenium and RuO2 electrodes by means of electrochemical methods and other spectroscopic methods is presented. Copper electrodeposition in platinum and ruthenium substrates is investigated at pH values higher than zero. In pH=5 solutions, the rise in local pH caused by the reduction of oxygen leads to the formation of a precipitate, characterized as posnjakite or basic copper sulfate by means of X-ray electron spectroscopy and X-ray diffraction. The mechanism of formation is studied by means of the EQCM, presenting this technique as a powerful in-situ sensing device.
Date: May 2005
Creator: Ojeda Mota, Oscar Ulises
Partner: UNT Libraries

Explorations with optically active, cage-annulated crown ethers.

Description: A variety of optically active macrocyclic crown ethers that serve as "host" systems that are capable of differentiating between enantiomeric "guest" molecules during host-guest complexation have been prepared via incorporation of chiral elements into the crown ring skeleton. The ability of these crown ethers to recognize the enantiomers of guest salts, i.e., (+) a-methyl benzylamine and to transport them enantioselectively in W-tube transport experiments were studied. The ability of these crown ethers to perform as chiral catalysts in an enantioselective Michael addition was studied. The extent of asymmetric induction, expressed in terms of the enantiomeric excess (%ee), was monitored by measuring the optical rotation of the product and comparing to the literature value.
Date: May 2003
Creator: Ji, Mingzhe
Partner: UNT Libraries

The Performance of Silicon Based Sensor and its Application in Silver Toxicity Studies

Description: The silicon based sensor is able to detect part per trillion ionic silver in 0.0098% hydrofluoric acid based on the open circuit potential (OCP) measurement. The OCP jump of 100 ppt ionic silver solution is up to 120 mV. The complex agent can effectively suppress the ionic silver concentration and suppress the OCP signal. The ability of complex agent to suppress the OCP signal depends on the formation constant of the complex with silver. The complex adsorbed on the sensor surface induces a second OCP jump, the height of the second jump depends on the formation constant of the complex. The MINEQL chemical equilibrium modeling program is used to calculate the ionic silver concentration when complex agent presents, a discrepancy is found between the MINEQL simulation result and the OCP signal of the silicon based sensor. The toxicity of ionic silver to C. dubia is studied parallel to the OCP signal of silicon based sensor. Less toxicity is found when the complex agent is present similar to the OCP signal. Another discrepancy is found between the MINEQL simulation and the toxicity test when MINEQL simulation is used to predict and control the ionic silver concentration. The data from both biosensor C. dubia and silicon based sensor support each other and both are not in agreement with MINEQL simulation prediction.
Date: August 2000
Creator: Peng, Haiqing
Partner: UNT Libraries

Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films

Description: Semiconductor circuitry feature miniaturization continues in response to Moore 's Law pushing the limits of aluminum and forcing the transition to Cu due to its lower resistivity and electromigration. Copper diffuses into silicon dioxide under thermal and electrical stresses, requiring the use of barriers to inhibit diffusion, adding to the insulator thickness and delay time, or replacement of SiO2 with new insulator materials that can inhibit diffusion while enabling Cu wetting. This study proposes modified amorphous silicon carbon hydrogen (a-Si:C:H) films as possible diffusion barriers and replacements for SiO2 between metal levels, interlevel dielectric (ILD), or between metal lines (IMD), based upon the diffusion inhibition of previous a-Si:C:H species expected lower dielectric constants, acceptable thermal conductivity. Vinyltrimethylsilane (VTMS) precursor was condensed on a titanium substrate at 90 K and bombarded with electron beams to induce crosslinking and form polymerized a-Si:C:H films. Modifications of the films with hydroxyl and nitrogen was accomplished by dosing the condensed VTMS with water or ammonia before electron bombardment producing a-Si:C:H/OH and a-Si:C:H/N and a-Si:C:H/OH/N polymerized films in expectation of developing films that would inhibit copper diffusion and promote Cu adherence, wetting, on the film surface. X-ray Photoelectron Spectroscopy was used to characterize Cu metallization of these a-Si:C:H films. XPS revealed substantial Cu wetting of a-Si:C:H/OH and a-Si:C:H/OH/N films and some wetting of a-Si:C:H/N films, and similar Cu diffusion inhibition to 800 K by all of the a-:S:C:H films. These findings suggest the possible use of a-Si:C:H films as ILD and IMD materials, with the possibility of further tailoring a-Si:C:H films to meet future device requirements.
Date: May 2004
Creator: Pritchett, Merry
Partner: UNT Libraries

Improvement of Homogeneity and Adhesion of Diamond-Like Carbon Films on Copper Substrates

Description: Electrodeposition method is used to deposit diamond-like carbon (DLC) films on copper substrates via anodic oxidation at low temperature. These films are characterized using Raman spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. Homogeneity of these films is studied using Raman spectroscopy and scanning electron microscopy. Scotch tape peel tests indicate adherent film on copper substrate. Carbon phase transformation is studied using thermal annealing experiments in conjunction with Raman spectroscopy and scanning electron microscopy. A cathodic electrochemical method is also studied to deposit diamond-like carbon films on copper substrates. However, films deposited by the cathodic route have poor adhesion and quality compared to anodically deposited films. It is also possible to grow diamond phase on copper substrates using acetylene in liquid ammonia via electrodeposition route. An electrochemical method is proposed for boron doping into DLC films.
Date: August 2004
Creator: Vavilala, Suma
Partner: UNT Libraries

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Description: The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH ≥ 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The deposits were examined and characterized by XRD.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2009
Creator: Conrad, Heidi A.
Partner: UNT Libraries

Analysis of Trace Amounts of Adulterants Found in Powders/Supplements Utilizing Direct Inject, Nanomanipulation, and Mass Spectrometry

Description: The regulations of many food products in the United States have been made and followed very well but unfortunately some products are not put under such rigorous standards as others. This leads to products being sold, that are thought to be healthy, but in reality contain unknown ingredients that may be hazardous to the consumers. With the use of several instrumentations and techniques the detection, characterization and identification of these unknown contaminates can be determined. Both the AZ-100 and the TE2000 inverted microscope were used for visual characterizations, image collection and to help guide the extraction. Direct analyte-probed nanoextraction (DAPNe) technique and nanospray ionization mass spectrometry (NSI-MS) was the technique used for examination and identification of all adulterants. A Raman imaging technique was than introduced and has proven to be a rapid, non-destructive and distinctive way to localize a specific adulterant. By compiling these techniques then applying them to the FDA supplied test samples three major adulterants were detected and identified.
Date: August 2016
Creator: Nnaji, Chinyere
Partner: UNT Libraries

Determination of Molecular Descriptors for Illegal Drugs by Gc-fid Using Abraham Solvation Model

Description: The Abraham solvation parameter model is a good approach for analyzing and predicting biological activities and partitioning coefficients. The general solvation equation has been used to predict the solute property (SP) behavior of drug compounds between biological barriers. Gas chromatography (GC) retention time can be used to predict molecular descriptors, such as E, S, A, B & L for existing and newly developed drug compounds. In this research, six columns of different stationary phases were used to predict the Abraham molecular descriptors more accurately. The six stationary phases used were 5% phenylmethyl polysiloxane, 6% cyanopropylphenyl 94% dimethylpolysiloxane, 5% diphenyl 95% dimethylpolysiloxane, 100% dimethylpolysiloxane, polyethylene glycol and 35% diphenyl 65% dimethylpolysiloxane. Retention times (RT) of 75 compounds have been measured and logarithm of experimental average retention time Ln(RTexp) are calculated. The Abraham solvation model is then applied to predict the process coefficients of these compounds using the literature values of the molecular descriptors (Acree Compilation descriptors). Six correlation equations are built up as a training set for each of the six columns. The six equations are then used to predict the molecular descriptors of the illegal drugs as a test set. This work shows the ability to extract molecular information from a new compound by utilizing commonly used GC columns available with the desired stationary phases. One can simply run the new compound in GC using these columns to get the retention time. Plugging in the retention time into the developed equations for each of the column will predict the molecular descriptors for the test compound and will give some information about the properties of the compound.
Date: December 2013
Creator: Akhter, Syeda Sabrina
Partner: UNT Libraries

The Effect of Menthol on Nicotine Metabolism: a Cross Species Evaluation

Description: The effect of menthol on nicotine metabolism was examined in liver S9 fractions of four different species and in the in vivo mouse model. The purpose of this study was to investigate three parameters: (1) biotransformation of nicotine to cotinine in various species (human, mouse, rat and trout) using in vitro methods; (2) to determine if the addition of menthol with nicotine altered biotransformation of nicotine to cotinine; (3) and to assess similar parameters in an in vivo mouse model. The major findings of this study include: (1) mice appear to metabolize nicotine, over time, in a manner similar to humans; (2) menthol decreased cotinine production, over time, after a single dose in mice; and (3) menthol increased cotinine production, over time, after repeated doses, in mice.
Date: December 2013
Creator: Pace, Wendy Lee
Partner: UNT Libraries

Characterization of Ionic Liquid As a Charge Carrier for the Detection of Neutral Organometallic Complexes Using Electrospray Ionization Mass Spectrometry

Description: A novel application of ionic liquid as a charge carrier for the analysis and detection of neutral organometallic complexes using a mass spectrometer has been presented. The mass spectrometer detects only charged compounds which raise a difficulty in analyzing a neutral molecule that lacks a basic site to associate with charge. Therefore, an effective way of providing charge has always been an area of keen interest in the field of mass spectrometry. Ionic liquids have a very fascinating property of forming a cation-? interaction with other molecules to give a charged complex. In order to take advantage of this, it is important to know the geometric structure of the complex. Advanced methodologies like hydrogen-deuterium exchange and computational calculations have been used assisting in better understanding of the structure of the ionic liquid complexes.
Date: August 2012
Creator: Joshi, Ubisha
Partner: UNT Libraries

Study of Novel Ion/surface Interactions Using Soft-landing Ion Mobility

Description: Preparative mass spectrometry is a gas-phase ion deposition technique aimed at deposition of monodisperse ion beams on a surface. This is accomplished through the implementation of a soft-landing ion mobility system which allows for high ion flux of conformationally selected ion packets. The soft-landing ion mobility system has been applied to a number of unique chemical problems including the deposition of insulators on graphene, the preparation of reusable surface enhanced Raman spectroscopic substrates, and the deposition of uranium nanoparticles. Soft-landing ion mobility provided a platform for the quick deposition of usable amounts of materials, which is the major objective of preparative mass spectrometry. Soft-landing ion mobility is unique when compared to other preparative mass spectrometric techniques in that the ion packets are conformationally separated, not separated on mass to charge ratio. This provides orthogonal complementary data to traditional mass spectrometric techniques and allows for the study of conformationally monodisperse surfaces. The diversity of problems that have been and continued to be explored with soft-landing ion mobility highlight the utility of the technique as a novel tool for the study of multiple ion/surface interactions.
Date: December 2012
Creator: Hoffmann, William Darryle
Partner: UNT Libraries

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Description: The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict more accurate results by increasing the samples with effective functional groups.
Date: May 2012
Creator: Wang, Zhouxing
Partner: UNT Libraries

Miniature Mass Spectrometry: Theory, Development and Applications

Description: As mass analyzer technology has continued to improve over the last fifty years, the prospect of field-portable mass spectrometers has garnered interest from many research groups and organizations. Designing a field portable instrument entails more than the scaling down of current commercial systems. Additional considerations such as power consumption, vacuum requirements and ruggedization also play key roles. In this research, two avenues were pursued in the initial development of a portable system. First, micrometer-scale mass analyzers and other electrostatic components were fabricated using silicon on insulator-deep reactive ion etching, and tested. Second, the dimensions of an ion trap were scaled to the millimeter level and fabricated from common metals and commercially available vacuum plastics. This instrument was tested for use in ion isolation and collision induced dissociation for secondary mass spectrometry and confirmatory analyses of unknowns. In addition to portable instrumentation, miniature mass spectrometers show potential for usage in process and reaction monitoring. To this end, a commercial residual gas analyzer was used to monitor plasma deposition and cleaning inside of a chamber designed for laser ablation and soft landing-ion mobility to generate metal-main group clusters. This chamber was also equipped for multiple types of spectral analysis in order to identify and characterize the clusters. Finally, a portion of this research was dedicated to method development in sample collection and analysis for forensic study. A new method for the analysis of illicit chemistries collected via electrostatic lifting is presented. This method incorporates surface-enhanced Raman microscopy as a prescreening tool for nanoextraction and nanospray ionization mass spectrometry.
Date: December 2013
Creator: Fox, James D.
Partner: UNT Libraries

Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates

Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline Ta significantly degrade the strength of Cu/Ta chemical interactions, and affect the kinetics of Cu diffusion into bulk Ta. On clean Ta, monolayer coverages of Cu will de-wet only above 600 K. A partial monolayer of adsorbed oxygen (3L O2 at 300 K) results in a lowering of the de-wetting temperature to 500 K, while saturation oxygen coverage (10 L O2, 300 K) results in de-wetting at 300 K. Carbide formation also lowers the de-wetting temperature to 300 K. Diffusion of Cu into the Ta substrate at 1100 K occurs only after a 5-minute induction period. This induction period increases ...
Date: December 1999
Creator: Chen, Li
Partner: UNT Libraries

Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds

Description: Thermolysis of CoRu(CO)7(m -PPh2) (1) in refluxing 1,2-dichloroethane in the presence of the diphosphine ligands 2,3-bis(diphenylphosphino)maleic anhydride (bma) and 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the new mixed-metal complexes CoRu(CO)4(μ -P-P)(μ -PPh2) [where P-P = bma (3); bpcd (6)], along with trace amounts of the known complex CoRu(CO)6(PPh3)(μ -PPh2) (4). The requisite pentacarbonyl intermediates CoRu(CO)5(μ -P-P)(μ -PPh2) [where P-P = bma (2); bpcd (5)] have been prepared by separate routes and studied for their conversion to CoRu(CO)4(μ -P-P)(μ -PPh2). The complexes 2/3 and 5/6 have been isolated and fully characterized in solution by IR and NMR spectroscopy. The kinetics for the conversion of 2→3 and of 5→6 were measured by IR spectroscopy in chlorobenzene solvent. On the basis of the first-order rate constants, CO inhibition, and the activation parameters, a mechanism involving dissociative CO loss as the rate-limiting step is proposed. The solid-state structure of CoRu(CO)4(μ -bma)(μ -PPh2) (3) reveals that the two PPh2 groups are bound to the ruthenium center while the maleic anhydride π bond is coordinated to the cobalt atom. Thermolysis of the cluster Ru3(CO)12 with the bis(phosphine)hydrazine ligand (MeO)2PN(Me)N(Me)P(OMe)2 (dmpdmh) in toluene at 75°C furnishes the known clusters Ru4(CO)12[μ -N(Me)N(Me)] (9) and Ru3(CO)11[P(OMe)3] (10), in addition to the new cluster Ru3(CO)10(dmpdmh) (8) and the phosphite-tethered cluster Ru3(CO)9[μ -P(OMe)3] (11). The simple substitution product Ru3(CO)10(dmpdmh), a logical intermediate to clusters 9-11, was synthesized by treating Ru3(CO)12 and dmpdmh with Me3NO in CH2Cl2 at room temperature, and independent thermolysis reactions using cluster 8 were shown to yield clusters 9-11. The tetrahedrane cluster FeCo2(CO)9(μ3-S) reacts with the redox-active ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) to give the disubstituted cluster FeCo2(CO)7(bpcd)(μ3-S) as the sole product. This diphosphine-substituted cluster contains a cobalt-bound, chelating bpcd ligand. The solid-state structure has been unequivocally established by X-ray diffraction analysis. Cyclic voltammetric studies on FeCo2(CO)7(bpcd)(μ3-S) reveal the presence of two quasireversible ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2000
Creator: Wang, Jiancheng
Partner: UNT Libraries

Explorations with Polycarbocyclic Cage Compounds

Description: A variety of novel cage-functionalized pyridyl containing crown ethers have been prepared for use in selective alkali metal complexation studies. A highly preorganized, cage-functionalized cryptand also has been designed and has been synthesized for use as a selective Li+ complexant. The alkali metal picrate extraction profiles of these cage-functionalized crown ethers also have been studied. Novel cage-functionalized diazacrown ethers have been prepared for selective alkali metal complexation studies. Alkali metal picrate extraction experiments have been performed by using this new class of synthetic ionophores to investigate the effects of cage-annulation and the influence of N-pivot lariat sidearms upon their resulting complexation properties. Novel pyridyl containing calix[4]arene receptors were prepared. Analysis of their respective 1H NMR and 13C NMR spectra suggests that calix[4]arene moieties in the ligand occupy the cone conformation. The complexation properties of these host molecules were estimated by performing a series of alkali metal picrate extraction experiments. An optically active cage-functionalized crown ether which contains a binaphthyl moiety as the chiral unit was prepared. The ability of the resulting optically active crown ether to distinguish between enantiomers of guest ammonium ions (i.e., phenylethylamonium and phenylglycinate salts) in transport experiments was investigated. Hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene-4,11-dione was prepared from hexacyclo[7.4.2.01,9.03,7.04,14.06,15] pentadeca-10,12-diene-2,8-dione. Unanticipated but remarkable acid and base promoted rearrangements of this new cage dione to novel polycyclic systems were observed and subsequently were investigated. The structures of the new systems thereby obtained were determined unequivocally by application of X-ray crystallographic methods. It is noteworthy that the reactions reported herein each provide the corresponding rearranged product in high yield in a single synthetic step. Pi-facial and regioselectivity in the thermal Diels-Alder cycloaddition between hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene- 4,11-dione and ethyl propiolate have been explored. This reaction proceeds via stereospecific approach of the dienophile toward the syn face of the diene p -system. However, [4+2]cycloaddition proceeds with ...
Date: August 1999
Creator: Chong, Hyun-Soon
Partner: UNT Libraries

Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

Description: The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
Date: May 2016
Creator: Williams, Kristina
Partner: UNT Libraries