Search Results

National Atlas of the United States

Description: This is the website for the National Atlas, which provides a comprehensive, maplike view into the enormous wealth of geospatial and geostatistical data collected for the United States. It includes many detailed, interactive maps of the nation on a wide variety of subjects such as the environment, history, government, population, and climate, as well as fully documented digital cartographic datasets and articles. The website was removed from service on September 30, 2014.
Date: September 22, 2014
Creator: United States. Department of the Interior. Geological Survey
Item Type: Website
Partner: UNT Libraries Digital Projects Unit

Chemical composition of selected core samples, Idaho National Engineering Laboratory, Idaho

Description: This report presents chemical compositions determined from 84 subsamples and 5 quality-assurance split subsamples of basalt core from the eastern Snake River Plain. The 84 subsamples were collected at selected depths from 5 coreholes located on the Idaho National Engineering Laboratory, Idaho. This report was jointly prepared by Lockheed Idaho Technologies Company and the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Idaho Operations Office. Ten major elements and as many as 32 trace elements were determined for each subsample either by wavelength dispersive X-ray fluorescence spectrometry, inductively coupled plasma mass spectrometry, or by both methods. Descriptive statistics for each element were calculated and tabulated by analytical method for each corehole.
Date: November 1, 1995
Creator: Knobel, L.L.; Cecil, L.D. & Wood, T.R.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

Description: The underground nuclear testing program of the US Department of Energy (USDOE) takes place at the Nevada Test Site (NTS), about 65 mi north-west of Las Vegas, Nevada. Underground nuclear tests at Yucca Flat, one of the USDOE test areas at NTS, have affected hydrologic conditions, including groundwater levels. The purpose of this map report, prepared in cooperation with USDOE, is to present selected water-level data collected from wells and test holes through December 1991, and to show potentiometric contours representing 1991 water-table conditions in the Yucca Flat area. The more generic term, potentiometric contours, is used herein rather than ``water-table contours`` because the hydrologic units contributing water to wells and test holes may not accurately represent the water table. The water table is that surface in an unconfined water body at which the pressure is atmospheric. It is defined by the altitude at which non- perched ground water is first found in wells and test holes. Perched ground water is defined as unconfined ground water separated from an underlying body of ground water by an unsaturated zone. This map report updates information on water levels in some wells and test holes and the resulting water-table contours in rocks of Cenozoic and Paleozoic age shown by Doty and Thordarson for 1980 conditions.
Date: December 1, 1995
Creator: Hale, G.S.; Trudeau, D.A. & Savard, C.S.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Basis for in-situ geomechanical testing at the Yucca Mountain site

Description: This report presents an analysis of the in-situ geomechanical testing needs for the Exploratory Shaft (ES) test facility at the Yucca Mountain site in Nevada. The testing needs are derived from 10CFR60 regulations and simple thermomechanical canister- and room-scale numerical studies. The testing approach suggested is based on an ``iterative`` procedure of full-scale testing combined with numerical and empirical modeling. The testing suggested is based heavily on demonstration of excavation and thermal loading of full-scale repository excavations. Numerical and/or empirical models are compared to the full-scale response, allowing for adjustment of the model and evaluation of confidence in their predictive ability. Additional testing may be specified if confidence in prediction of the rock mass response is low. It is suggested that extensive drifting be conducted within the proposed repository area, including exploration of the bounding Drill Hole Wash and Imbricate fault structures, as well as the Ghost Dance fault. This approach is opposed to an a priori statistical specification of a number of ``point`` tests which attempt to measure a given property at a specific location. 40 refs., 49 figs., 6 tabs.
Date: July 1, 1989
Creator: Board, M.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Structural relationships of pre-Tertiary rocks in the Nevada Test Site region, southern Nevada

Description: This report summarizes the evidence for a revised interpretation of major structural features in the pre-Tertiary rocks of the region including and surrounding the Nevada Test Site. The thick miogeoclinal section of Late Proterozoic through Lower Permian sedimentary strata records major foreland-vergent thrust faulting, younger hinterland-vergent folding and thrusting, and local extension on low-angle normal faults. In addition, structural discontinuities in the northeastern part of the Nevada Test Site strongly suggest a broad, north-trending zone of sinistral strike-slip faulting that may have had a cumulative offset of many kilometers.
Date: August 30, 1999
Creator: Cashman, P.H. & Cole, J.C.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Hydrological and meteorological data for an unsaturated-zone study area near the Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho, 1988 and 1989

Description: Trenches and pits at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory have been used for burial of radioactive waste since 1952. In 1985, the US Geological Survey, in cooperation with the US Department of Energy, began a multi-phase study of the geohydrology of the RWMC to provide a basis for estimating the extent of and the potential for migration of radionuclides in the unsaturated zone beneath the waste trenches and pits. This phase of the study is being conducted to provide hydrological and meteorological data for an area adjacent to the northern boundary of the RWMC.
Date: January 1, 1995
Creator: Pittman, J.R.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

Description: The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.
Date: January 1, 1988
Item Type: Report
Partner: UNT Libraries Government Documents Department

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

Description: Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.
Date: January 1, 1988
Item Type: Report
Partner: UNT Libraries Government Documents Department

Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices

Description: Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.
Date: May 1, 1985
Item Type: Report
Partner: UNT Libraries Government Documents Department

Environmental Assessment and Finding of No Significant Impact: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

Description: The scope of this environmental assessment (EA) is to analyze the potential consequences of the Proposed Action on human health and the environment. Accordingly, this EA contains an introduction to the site and the history of the Grand Junction Office (Chapter One), a description of the Purpose and Need for Agency Action (Chapter Two), a description of the Proposed Action and Alternatives (Chapter Three), and the description of the Affected Environment and the Environmental Consequences (Chapter Four). Resource categories addressed in this EA include geology, soils and topography, groundwater and surface water, floodplains and wetlands, land use and infrastructure, human health, ecological resources, cultural resources, air quality, noise, visual resources, solid and hazardous waste management, transportation, and socioeconomic and environmental justice.
Date: April 25, 2000
Creator: /A, N
Item Type: Report
Partner: UNT Libraries Government Documents Department

Geologic evaluation of the Oasis Valley basin, Nye County, Nevada

Description: This report documents the results of a geologic study of the area between the underground-nuclear-explosion testing areas on Pahute Mesa, in the northwesternmost part of the Nevada Test Site, and the springs in Oasis Valley, to the west of the Test Site. The new field data described in this report are also presented in a geologic map that is a companion product(Fridrich and others, 1999) and that covers nine 7.5-minute quadrangles centered on Thirsty Canyon SW, the quadrangle in which most of the Oasis Valley springs are located. At the beginning of this study, published detailed maps were available for 3 of the 9 quadrangles of the study area: namely Thirsty Canyon (O'Connor and others, 1966); Beatty (Maldonado and Hausback, 1990); and Thirsty Canyon SE (Lipman and others, 1966). Maps of the last two of these quadrangles, however, required extensive updating owing to recent advances in understanding of the regional structure and stratigraphy. The new map data are integrated in this re port with new geophysical data for the Oasis Valley area, include gravity, aeromagnetic, and paleomagnetic data (Grauch and others, 1997; written comm., 1999; Mankinen and others, 1999; Hildenbrand and others, 1999; Hudson and others, 1994; Hudson, unpub. data).
Date: January 13, 2000
Creator: Fridrich, C.J.; Minor, S.A. & and Mankinen, E.A.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Near-surface heater experiments

Description: Full-scale near-surface heater experiments are presently being conducted by Sandia Laboratories in the Conasauga Formation at Oak Ridge, Tennessee, and in the Eleana Formation on the Nevada Test Site, Nevada. The purposes of these experiments are: (1) to determine if argillaceous media can withstand thermal loads characteristic of high level waste; (2) to provide data for improvement of themomechanical modeling of argillaceous rocks; (3) to identify instrumentation development needed for further in situ testing; and (4) to identify unexpected general types of behavior, if any. The basic instrumentation of these tests consists of a heater in a central hole, surrounded by arrays of holes containing various instrumentation. Temperatures, thermal profiles, vertical displacements, volatile pressurization, and changes in in situ stresses are measured in each experiment as a function of time, and compared with pretest modeling results. Results to date, though in general agreement with modeling results assuming conductive heat transfer within the rock, indicate that the presence of even small amounts of water can drastically affect heat transfer within the heater hole itself, and that small amounts of upward convection of water may be occurring in the higher temperature areas of the Conasauga experiments.
Date: December 31, 1978
Creator: Tyler, L.D.; Cuderman, J.F.; Krumhansl, J.L. & Lappin, A.
Item Type: Article
Partner: UNT Libraries Government Documents Department

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

Description: The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.
Date: January 1, 1988
Item Type: Report
Partner: UNT Libraries Government Documents Department

Preliminary evaluation of 30 potential granitic rock sites for a radioactive waste storage facility in southern Nevada

Description: Results of preliminary study are presented which was performed under subtask 2.7 of the NTS Terminal Waste Storage Program Plan for 1978. Subtask 2.7 examines the feasibility of locating a nuclear waste repository in a granitic stock or pluton in southern Nevada near the Nevada Test Site (NTS). It is assumed for the purposes of this study that such a repository cannot be located at NTS. This assumption may or may not be correct. This preliminary report does not identify a particular site as being a suitable location for a repository. Nor does it absolutely eliminate a particular site from further consideration. It does, however, answer the basic question of probable suitability of some of the sites and present a systematic method for site evaluation. Since the findings of this initial study have been favorable, it will be followed by more exhaustive and detailed studies of the original 30 sites and perhaps others. In future studies some of the evaluation criteria used in the preliminary study may be modified or eliminated, and new criteria may be introduced.
Date: February 15, 1978
Creator: Boardman, C.R. & Knutson, C.F.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report

Description: Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.
Date: May 1, 1985
Item Type: Report
Partner: UNT Libraries Government Documents Department

Miscellaneous investigations series: Bedrock geologic map of the Lone Mountain pluton area, Esmeralda County, Nevada

Description: The joint attitudes were measured in the field and plotted on aerial photos at a scale of 1:24,000. The pluton is intensely jointed, primarily as a result of cooling and movement of the magma within a northwest-trending stress field. Foliation, in general, is poorly developed, and quality varies from area to area, but it is best developed close to the contacts with the metasedimentary rocks. A prominent northwest foliation direction was observed that parallels the northwest elongation of the exposed pluton. Faults in the pluton are difficult to identify because of the homogeneity of the rock. Several faults were mapped in the northern part of the area where they have a northeast trend and intersect the northwest-trending lamprophyre dikes with little apparent displacement. A major fault that bounds the northern part of the pluton is downthrown to the north and strikes northeast. This fault offsets the alluvium, the metasedimentary rocks, and the pluton and forms fault scraps as high as 10 m. Aeromagnetic data (US Geological Survey, 1979) suggest the following: (1) the local magnetic highs in the central part of the Lone Mountain pluton are probably related to topographic highs (peaks) where the flight lines are closer to the pluton; (2) a magnetic low in the northeastern part of Lone Mountain coincides with the pluton-country rock contact, which may be very steep; (3) the contours for the southwestern part of the mapped area indicate that the pluton-country rock contact is not as steep as that in the northeastern part and that the pluton probably coalesces at depth with the Weepah pluton, a pluton exposed south of the mapped area; and (4) the contours for the area of the Lone Mountain pluton express a northwest-trending gradient that parallels the northwest elongation of the Lone Mountain pluton and the northwest-trending stress ...
Date: December 31, 1984
Creator: Maldonado, F.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

Description: The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.
Date: December 31, 1984
Creator: Bedinger, M.S.; Sargent, K.A. & Reed, J.E.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

Description: The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.
Date: December 31, 1984
Creator: Bedinger, M.S.; Sargent, K.A. & Reed, J.E.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

Description: Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.
Date: December 31, 1987
Creator: Hillhouse, J.W.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

Description: The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above.
Date: December 31, 1977
Item Type: Report
Partner: UNT Libraries Government Documents Department

Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

Description: Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.
Date: December 15, 2006
Creator: Barnett, D. BRENT & Garcia, Benjamin J.
Item Type: Report
Partner: UNT Libraries Government Documents Department

Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

Description: Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences ...
Date: March 30, 2011
Creator: Dilley, Lorie M.
Item Type: Report
Partner: UNT Libraries Government Documents Department