237 Matching Results

Search Results

Asian Carp and the Great Lakes Region

Description: This report provides an overview of four species of non-indigenous Asian carp that are expanding their range in U.S. waterways, resulting in a variety of concerns and problems. This report details the environmental and economic threats from this invasion, as well as ways to combat the spread of Asian carp in U.S. water.
Date: August 6, 2010
Creator: Buck, Eugene H.; Upton, Harold F.; Stern, Charles V. & Nichols, James E.
Partner: UNT Libraries Government Documents Department

Asian Carp and the Great Lakes Region

Description: This report discusses four species of non-indigenous Asian carp that are expanding their range in U.S. waterways, resulting in a variety of concerns and problems. Three species--bighead, silver, and black carp--are of particular note, based on the perceived degree of environmental concern. Current controversy relates to what measures might be necessary and sufficient to prevent movement of Asian carp from the Mississippi River drainage into the Great Lakes through the Chicago Area Waterway System. Bills have been introduced in the 111th Congress to direct actions to avoid the possibility of carp becoming established in the Great Lakes.
Date: November 30, 2010
Creator: Buck, Eugene H.; Upton, Harold F.; Stern, Charles V. & Nichols, James E.
Partner: UNT Libraries Government Documents Department

International Illegal Trade in Wildlife: Threats and U.S. Policy

Description: This report focuses on the international trade in terrestrial fauna, largely excluding trade in illegal plants, including timber, and fish, and discusses potential environmental and national security threats, as well as evaluating U.S. policy to combat wildlife trafficking.
Date: August 22, 2008
Creator: Sun Wyler, Liana & Sheikh, Pervaze A.
Partner: UNT Libraries Government Documents Department

Endangered Species Act and Legal Issues Regarding Columbia Basin Salmon and Steelhead

Description: This report discusses the resident fish, such as bull trout and Kootenai River white sturgeon, which are listed as threatened and endangered respectively under the ESA are affected by the Federal Columbia River Power System (FCRPS). This report focuses on Endangered Species Act (ESA) actions and litigation related to these species.
Date: May 12, 2008
Creator: Lane, Nic; Alexander, Kristina & Buck, Eugene H.
Partner: UNT Libraries Government Documents Department

Bioavailability study for the Paducah Gaseous Diffusion Plant

Description: The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).
Date: August 1, 1996
Creator: Phipps, T.L. & Kszos, L.A.
Partner: UNT Libraries Government Documents Department

Toxicological benchmark for screening of potential contaminants of concern for effects on aquatic biota on the Oak Ridge Reservation, Oak Ridge, Tennessee; Environmental Restoration Program

Description: One of the initial stages in ecological risk assessment of hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration. This report presents potential screening benchmarks for protection of aquatic life from contaminants in water. Because there is no guidance for screening benchmarks, a set of alternative benchmarks is presented here. The alternative benchmarks are based on different conceptual approaches to estimating concentrations causing significant effects. To the extent that toxicity data are available, this report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate the benchmarks, and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility.
Date: September 1992
Creator: Suter, G. W., II; Futrell, M. A. & Kerchner, G. A.
Partner: UNT Libraries Government Documents Department

Hydropower research and development

Description: This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.
Date: March 1, 1997
Partner: UNT Libraries Government Documents Department

DOE Hydropower Program biennial report 1994--1995 with an updated annotated bibliography

Description: This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1994 and 1995. The report discusses the activities in the four areas of the hydropower program: Environmental Research; Resource Assessment; Research Cost-Shared with Industry; and Technology Transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.
Date: May 1, 1995
Creator: Rinehart, B.N.; Francfort, J.E.; Sommers, G.L.; Cada, G.F. & Sale, M.J.
Partner: UNT Libraries Government Documents Department

Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin of Washington : 2000 Annual Report.

Description: Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77. 12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000).
Date: November 1, 2001
Creator: Mendel, Glen Wesley; Karl, David & Coyle, Terrence
Partner: UNT Libraries Government Documents Department

Fish behavior in relation to modeling fish passage through hydropower turbines: A review

Description: We evaluated the literature on fish behavior as it relates to passage of fish near or through hydropower turbines. The goal was to foster compatibility of engineered systems with the normal behavior patterns of fish species and life stages such that entrainment into turbines and injury in passage are minimized. We focused on aspects of fish behavior that could be used for computational fluid dynamics (CFD) modeling of fish trajectories through turbine systems. Downstream-migrating salmon smolts are generally surface oriented and follow flow. Smolts orient to the ceilings of turbine intakes but are horizontally distributed more evenly, except as affected by intake-specific turbulence and vortices. Smolts often enter intakes oriented head-upstream. Non-salmonids are entrained episodically, suggesting accidental capture of schools (often of juveniles or in cold water) and little behavioral control during turbine passage. Models of fish trajectories should not assume neutral buoyancy throughout the time a fish passes through a turbine, largely because of pressure effects on swim bladders. Fish use their lateral line system to sense obstacles and change their orientation, but this sensory-response system may not be effective in the rapid passage times of turbine systems. A Effects of pre-existing stress levels on fish performance in turbine passage are not well known but may be important. There are practical limits of observation and measurement of fish and flows in the proximity of turbine runners that may inhibit development of information germane to developing a more fish-friendly turbine. We provide recommendations for CFD modelers of fish passage and for additional research. 20 refs., 2 figs.
Date: June 1, 1997
Creator: Coutant, C.C. & Whitney, R.R.
Partner: UNT Libraries Government Documents Department

Fish passage mitigation of impacts from hydroelectric power projects in the United States

Description: Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy`s Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality.
Date: October 1, 1996
Creator: Cada, G.F.
Partner: UNT Libraries Government Documents Department

Foothills Parkway Section 8B Final Environmental Report, Volume 3, Appendix D

Description: In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER inventories the fishes and benthic macroinvertebrates inhabiting the aquatic ecosystems potentially affected by the proposed construction of Section 8B. Stream biological surveys were completed at 31 stream sites during the Fall of 1994. The sampling strategy for both invertebrates and fish was to survey the different taxa from all available habitats. For benthic invertebrates, a ...
Date: July 1999
Creator: Blasing, T. J.; Cada, G. F.; Carer, M.; Chin, S. M.; Dickerman, J. A.; Etnier, D. A. et al.
Partner: UNT Libraries Government Documents Department

Fine-scale oscillatory banding in otoliths from arctic charr (Salveninus alpinus) and pike (Esox lucius)

Description: Transmission electron microscopy of otoliths from the inner ear of arctic charr and pike has revealed the presence of fine banding on the scale of several nanometers. The thickness of the bands was observed to vary in different portions of the sample, and some areas were not banded. EDS analysis could not detect chemical differences within the bands, but electron diffraction showed that the crystallographic orientation of the bands is related by a lattice mismatch. Previously, banding on the scale of 50 to 100 microns was observed by SEM in otoliths from arctic charr and was attributed to seasonal variations in growth. The fine-scale banding observed in this study, however, is unlikely to represent a daily variation. Electron diffraction from the pike samples shows that the material is composed of CaCO{sub 3} having the both the vaterite and aragonite structure, and hydrous CaCO{sub 3} was also observed. The large-scale banding previously identified by SEM was not observed in the TEM despite attempts to intersect the boundaries of the micron-sized layers. The interaction of the electron beam with the sample material was investigated by conducting several electron-irradiation experiments. The electron beam was observed to interact strongly with the sample and caused the precipitation of cubic CaO from the calcium carbonate matrix. Bright-field imaging showed the development of fine grained ({approximately} 5 nm) randomly oriented crystallites which accumulated with increasing electron dose. These initial results suggest that the precipitation of CaO is not driven by electron-beam beating. Previously, a similar phase-change phenomenon has been observed in hydroxyapatite from dental enamel. Other Ca-bearing biominerals may therefore also be expected to be sensitive to electron irradiation.
Date: December 31, 1997
Creator: Meldrum, A. & Halden, N.M.
Partner: UNT Libraries Government Documents Department

Identification and treatment of lithium as the primary toxicant in a groundwater treatment facility effluent

Description: {sup 6}Li is used in manufacturing nuclear weapons, shielding, and reactor control rods. Li compounds have been used at DOE facilities and Li-contaminated waste has historically been land disposed. Seep water from burial grounds near Y-12 contain small amounts of chlorinated hydrocarbons, traces of PCBs, and 10-19 mg/L Li. Seep treatment consists of oil-water separation, filtration, air stripping, and carbon adsorption. Routine biomonitoring tests using fathead minnows and {ital Ceriodaphnia}{ital dubia} are conducted. Evaluation of suspected contaminants revealed that toxicity was most likely due to Li. Laboratory tests showed that 1 mg Li/L reduced the survival of both species; 0.5 mg Li/L reduced {ital Ceriodaphnia} reproduction and minnow growth. However, the toxicity was greatly reduced in presence of sodium (up to 4 mg Li/L, Na can fully negate the toxic effect of Li). Because of the low Na level discharged from the treatment facility, Li removal from the ground water was desired. SuperLig{reg_sign} columns were used (Li-selective organic macrocycle bonded to silica gel). Bench-scale tests showed that the material was very effective for removing Li from the effluent, reducing the toxicity.
Date: October 1, 1996
Creator: Kszos, L.A. & Crow, K.R.
Partner: UNT Libraries Government Documents Department

Shaken, not stirred: The recipe for a fish-friendly turbine

Description: It is generally agreed that injuries and mortalities among turbine-passed fish can result from several mechanisms, including rapid and extreme water pressure changes, cavitation, shear, turbulence, and mechanical injuries (strike and grinding). Advances in the instrumentation available for monitoring hydraulic conditions and Computational Fluid Dynamics (CFD) techniques now make it possible both to estimate accurately the levels of these potential injury mechanisms in operating turbines and to predict the levels in new turbine designs. This knowledge can be used to {open_quotes}design-out{close_quotes} the most significant injury mechanisms in the next generation of turbines. However, further improvements in turbine design are limited by a poor understanding of the levels of mechanical and hydraulic stresses that can be tolerated by turbine-passed fish. The turbine designers need numbers (biological criteria) that define a safety zone for fish within which pressures, shear forces, cavitation, and chance of mechanical strike are all at acceptable levels for survival. This paper presents the results of a literature review of fish responses to the types of biological stresses associated with turbine passage, as studied separately under controlled conditions in the laboratory rather than in combination at field sites. Some of the controlled laboratory and field studies reviewed here were bioassays carried out for reasons unrelated to hydropower production. Analysis of this literature was used to develop provisional biological criteria for hydroelectric turbine designers. These biological criteria have been utilized in the U.S. Department of Energy`s Advanced Hydropower Turbine System (AHTS) Program to evaluate the results of conceptual engineering designs and the potential value of future turbine models and prototypes.
Date: March 1, 1997
Creator: Cada, G.F.
Partner: UNT Libraries Government Documents Department

Current challenges in contaminant effects monitoring: Multiple stressors and ecological significance

Description: Aquatic ecosystems are complex entities that are controlled and regulated by a multitude of physicochemical and biological processes. In addition, aquatic organisms experience a variety of natural and man-induced stressors, both of which vary spatially and temporally. The high variability in environmental factors combined with synergistic and cumulative interactions of these factors in aquatic ecosystems complicate the interpretation and evaluation of the effects of contaminant-related stressors on organisms. With this in mind, some main challenges facing those concerned with assessing the effects of environmental contaminants on organisms are (1) the influence of multiple stressors on stress responses in biological systems, (2) determining causal relationships between various levels of biological response to stressors, and (3) identifying early warning indicators or measures of organism impairment that have biological significance before irreversible or serious disability occurs. In all these areas, the health of biological systems (from the individual level to the population and community levels) has as its basis the physiological performance of the organism. Therefore, aspects of contaminant effects monitoring which include physiological measures of health should not only be utilized as measures of deviations from normal function, but should also be applied in the larger context of helping to understand multiple stressor effects, causal relationships between different levels of biological response, and early warning indicators of biologically significant effects.
Date: September 1996
Creator: Adams, S. M. & Ham, K. D.
Partner: UNT Libraries Government Documents Department

Second report on the Oak Ridge Y-12 Plant fish kill for Upper East Fork Poplar Creek

Description: This report summarizes the monitoring of fish kills in upper East Fork Poplar Creek (EFPC) from July 1990 to June 1993. Since the opening of Lake Reality (LR) in 1988, total numbers of fish inhabiting upper EFPC have increased. However, species diversity has remained poor. Water quality data have been collected in upper EFPC during the time period covered in this report. Total residual chlorine (TRC) levels have exceeded federal and state water quality criteria over the years. However, with the installation of two dechlorination systems in late 1992, TRC levels have been substantially lowered in most portions of upper EFPC. By June 1993, concentrations of TRC were 0.04 to 0.06 mg/L at the north-south pipes (NSP) and below detection limits at sampling station AS-8 and were 0 to 0.01 mg/L at the inlet and outlet of LR. The daily chronic fish mortality in upper EFPC has been attributed to background stress resulting from the continuous discharge of chlorine into upper EFPC. Mean daily mortality rates for 22 acute fish kills were three fold or more above background and usually exceeded ten fish per day. Total number of dead fish collected per acute kill event ranged from 30 to over 1,000 fish; predominant species killed were central stonerollers (Campostoma anomalum) and striped shiners (Luxilus chrysocephalus). Spills or elevated releases of toxic chemicals, such as acids, organophosphates, aluminum nitrate, ammonia, or chlorine, were identified as possible causative agents; however, a definitive cause-effect relationship was rarely established for any acute kills. Ambient toxicity testing, in situ chemical monitoring, and streamside experiments were used to examine TRC dynamics and ambient toxicity in EFPC.
Date: August 1, 1994
Creator: Etnier, E.L.; Opresko, D.M. & Talmage, S.S.
Partner: UNT Libraries Government Documents Department

Model Watershed Development in Eastern Washington, Administrative Project Support, Annual Progress Report

Description: The purpose of the Model Watershed Coordinator Grant was to help impact water quality and fisheries habitat concerns within the Asotin Creek Watershed by developing relationships between local landowners and resource agencies in the area.
Date: October 28, 1998
Creator: Bottman, Bob; Bartels, Duane & Johnson, Bradley J.
Partner: UNT Libraries Government Documents Department

The Use of Advanced Hydroelectric Turbines to Improve Water Quality and Fish Populations

Description: Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world�s electrical energy. It is a renewable energy source that can contribute significantly to reduction of greenhouse gases by offsetting conventional carbon-based electricity generation. However, rather than growing in importance, hydroelectric generation has actually declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, �environmentally friendly� turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been developed in the initial phases of the AHTS program are described.
Date: September 20, 1999
Creator: Brookshier, P. A.; Cada, G. F.; Flynn, J. V.; Rinehart, B. N.; Sale, M. J. & Sommers, G. L.
Partner: UNT Libraries Government Documents Department

Statistical methods for detecting ichthyoplankton density patterns that influence entrainment mortality

Description: Samples of drifting American shad eggs were collected at two transects in the Savannah River near industrial water intakes. At each transect the river was divided into four sectors that were sampled at two hour intervals over a 24 hour period. The actual risk of entrainment was approximately 35-50% lower that if the shad eggs were uniformly distributed, and the risk of entrainment was lower at one intake than the other.
Date: December 31, 1995
Creator: Paller, M.H.; Tuckfield, R.C. & Starkel, W.M.
Partner: UNT Libraries Government Documents Department

Radiological impact of 1996 operations at the Savannah River Site

Description: During 1996, atmospheric releases of tritium from the Savannah River Site (SRS) were dramatically less than in 1995. The total amount of atmospheric tritium released during 1996 was 55,300 curies, which was 43% less than the total of 96,700 curies. Of the total tritium released, 40,100 curies were tritium oxide, this was 27% less than the 1995 atmospheric tritium oxide release total of 55,000 curies. Releases of radioactive liquid effluents from SRS decreased during 1996. Liquid releases of tritium (which constitutes more than 99% of the total radioactivity released to the Savannah River) in 1996 (8,950 curies) were about 21% less than during 1995 (11,400 curies). In 1996, the potential dose to the maximally exposed individual from SRS atmospheric releases was estimated to be 0.05 mrem, 0.5% of the US Environmental Protection Agency (EPA) and US Department of Energy (DOE) air pathway dose standard of 10 mrem/year. The 80-kilometer-radius population of 620,100 people potentially received a collective dose of 2.8 person-rem from SRS atmospheric radioactive releases. The 1996 collective dose was about 20% lower than the 1995 collective dose of 3.5 person-rem. The potential dose to the maximally exposed individual from 1996 SRS liquid radioactive releases was estimated to be 0.14 mrem, 0.14% of the DOE all-pathway dose standard of 100 mrem/year. The collective dose from SRS liquid releases during 1996 was estimated at 2.2 person-rem. The major exposure pathway to the population was drinking water, with tritium accounting for more than 70% of the total collective dose.
Date: August 1, 1997
Creator: Jannik, G.T.
Partner: UNT Libraries Government Documents Department

CalTOX, a multimedia total exposure model for hazardous-waste sites; Part 1, Executive summary

Description: CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population.
Date: June 1, 1993
Creator: McKone, T.E.
Partner: UNT Libraries Government Documents Department

Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

Description: The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.
Date: March 1996
Creator: Roy, W. K.; Ryon, M. G. & Hinzman, R. L.
Partner: UNT Libraries Government Documents Department

Third report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

Description: As a condition of the modified National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site) on September 11, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream (Mitchell Branch or K-1700 stream). On October 1, 1992, a renewed NPDES permit was issued for the K-25 Site. A biological monitoring plan was submitted for Mitchell Branch, Poplar Creek, Poplar Creek Embayment of the Clinch River and any unnamed tributaries of these streams. The objectives of BMAP are to (1) demonstrate that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life and (2) document the effects on stream biota resulting from operation of major new pollution abatement facilities, including the Central Neutralization Facility (CNF) and the Toxic Substances Control Act (TSCA) incinerator. The BMAP consists of four tasks: (1) toxicity monitoring; (2) bioaccumulation monitoring; (3) assessment of fish health; and (4) instream monitoring of biological communities, including benthic macroinvertebrates and fish. This document, the third in a series, reports on the results of the Oak Ridge K-25 Site BMAP; it describes studies that were conducted over various periods of time between June 1990 and December 1993, although monitoring conducted outside this time period is included, as appropriate.
Date: August 1995
Creator: Hinzman, R. L.; Adams, S. M. & Ashwood, T. L.
Partner: UNT Libraries Government Documents Department