7 Matching Results

Search Results

Modeling Epidemics on Structured Populations: Effects of Socio-demographic Characteristics and Immune Response Quality

Description: Epidemiologists engage in the study of the distribution and determinants of health-related states or events in human populations. Eventually, they will apply that study to prevent and control problems and contingencies associated with the health of the population. Due to the spread of new pathogens and the emergence of new bio-terrorism threats, it has become imperative to develop new and expand existing techniques to equip public health providers with robust tools to predict and control health-related crises. In this dissertation, I explore the effects caused in the disease dynamics by the differences in individuals’ physiology and social/behavioral characteristics. Multiple computational and mathematical models were developed to quantify the effect of those factors on spatial and temporal variations of the disease epidemics. I developed statistical methods to measure the effects caused in the outbreak dynamics by the incorporation of heterogeneous demographics and social interactions to the individuals of the population. Specifically, I studied the relationship between demographics and the physiological characteristics of an individual when preparing for an infectious disease epidemic.
Date: August 2014
Creator: Reyes Silveyra, Jorge A.
Partner: UNT Libraries

Modeling Infectious Disease Spread Using Global Stochastic Field Simulation

Description: Susceptibles-infectives-removals (SIR) and its derivatives are the classic mathematical models for the study of infectious diseases in epidemiology. In order to model and simulate epidemics of an infectious disease, a global stochastic field simulation paradigm (GSFS) is proposed, which incorporates geographic and demographic based interactions. The interaction measure between regions is a function of population density and geographical distance, and has been extended to include demographic and migratory constraints. The progression of diseases using GSFS is analyzed, and similar behavior to the SIR model is exhibited by GSFS, using the geographic information systems (GIS) gravity model for interactions. The limitations of the SIR and similar models of homogeneous population with uniform mixing are addressed by the GSFS model. The GSFS model is oriented to heterogeneous population, and can incorporate interactions based on geography, demography, environment and migration patterns. The progression of diseases can be modeled at higher levels of fidelity using the GSFS model, and facilitates optimal deployment of public health resources for prevention, control and surveillance of infectious diseases.
Date: August 2006
Creator: Venkatachalam, Sangeeta
Partner: UNT Libraries

Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Description: Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with probability distributions of HIV surveillance data coupled with the census population data to estimate the proportion of HIV incidence among the different demographic subgroups. Demographic based risk analysis lends to observation of varied spectrum of HIV risk among the different demographic subgroups. A methodology using hidden Markov models is introduced that enables to investigate the impact of social behavioral interactions in the incidence and prevalence of infectious diseases. The methodology is presented in the context of simulated disease outbreak data for influenza. Probabilistic reasoning analysis enhances the understanding of disease progression in order to identify the critical points of surveillance, ...
Date: May 2006
Creator: Abbas, Kaja Moinudeen
Partner: UNT Libraries

Computational Epidemiology - Analyzing Exposure Risk: A Deterministic, Agent-Based Approach

Description: Many infectious diseases are spread through interactions between susceptible and infectious individuals. Keeping track of where each exposure to the disease took place, when it took place, and which individuals were involved in the exposure can give public health officials important information that they may use to formulate their interventions. Further, knowing which individuals in the population are at the highest risk of becoming infected with the disease may prove to be a useful tool for public health officials trying to curtail the spread of the disease. Epidemiological models are needed to allow epidemiologists to study the population dynamics of transmission of infectious agents and the potential impact of infectious disease control programs. While many agent-based computational epidemiological models exist in the literature, they focus on the spread of disease rather than exposure risk. These models are designed to simulate very large populations, representing individuals as agents, and using random experiments and probabilities in an attempt to more realistically guide the course of the modeled disease outbreak. The work presented in this thesis focuses on tracking exposure risk to chickenpox in an elementary school setting. This setting is chosen due to the high level of detailed information realistically available to school administrators regarding individuals' schedules and movements. Using an agent-based approach, contacts between individuals are tracked and analyzed with respect to both individuals and locations. The results are then analyzed using a combination of tools from computer science and geographic information science.
Date: August 2009
Creator: O'Neill II, Martin Joseph
Partner: UNT Libraries

Social Network Simulation and Mining Social Media to Advance Epidemiology

Description: Traditional Public Health decision-support can benefit from the Web and social media revolution. This dissertation presents approaches to mining social media benefiting public health epidemiology. Through discovery and analysis of trends in Influenza related blogs, a correlation to Centers for Disease Control and Prevention (CDC) influenza-like-illness patient reporting at sentinel health-care providers is verified. A second approach considers personal beliefs of vaccination in social media. A vaccine for human papillomavirus (HPV) was approved by the Food and Drug Administration in May 2006. The virus is present in nearly all cervical cancers and implicated in many throat and oral cancers. Results from automatic sentiment classification of HPV vaccination beliefs are presented which will enable more accurate prediction of the vaccine's population-level impact. Two epidemic models are introduced that embody the intimate social networks related to HPV transmission. Ultimately, aggregating these methodologies with epidemic and social network modeling facilitate effective development of strategies for targeted interventions.
Date: August 2009
Creator: Corley, Courtney David
Partner: UNT Libraries

Development, Implementation, and Analysis of a Contact Model for an Infectious Disease

Description: With a growing concern of an infectious diseases spreading in a population, epidemiology is becoming more important for the future of public health. In the past epidemiologist used existing data of an outbreak to help them determine how an infectious disease might spread in the future. Now with computational models, they able to analysis data produced by these models to help with prevention and intervention plans. This paper looks at the design, implementation, and analysis of a computational model based on the interactions of the population between individuals. The design of the working contact model looks closely at the SEIR model used as the foundation and the two timelines of a disease. The implementation of the contact model is reviewed while looking closely at data structures. The analysis of the experiments provide evidence this contact model can be used to help epidemiologist study the spread of an infectious disease based on the contact rate of individuals.
Date: May 2009
Creator: Thompson, Brett Morinaga
Partner: UNT Libraries

Monitoring Dengue Outbreaks Using Online Data

Description: Internet technology has affected humans' lives in many disciplines. The search engine is one of the most important Internet tools in that it allows people to search for what they want. Search queries entered in a web search engine can be used to predict dengue incidence. This vector borne disease causes severe illness and kills a large number of people every year. This dissertation utilizes the capabilities of search queries related to dengue and climate to forecast the number of dengue cases. Several machine learning techniques are applied for data analysis, including Multiple Linear Regression, Artificial Neural Networks, and the Seasonal Autoregressive Integrated Moving Average. Predictive models produced from these machine learning methods are measured for their performance to find which technique generates the best model for dengue prediction. The results of experiments presented in this dissertation indicate that search query data related to dengue and climate can be used to forecast the number of dengue cases. The performance measurement of predictive models shows that Artificial Neural Networks outperform the others. These results will help public health officials in planning to deal with the outbreaks.
Date: May 2014
Creator: Chartree, Jedsada
Partner: UNT Libraries