Search Results

The electricity portfolio simulation model (EPSim) technical description.

Description: Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 to 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of Energy's (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.
Date: September 1, 2005
Creator: Drennen, Thomas E. & Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)
Partner: UNT Libraries Government Documents Department

Innovative applications of energy storage in a restructured electricity marketplace : Phase III final report : a study for the DOE Energy Storage Systems Program.

Description: This report describes Phase III of a project entitled Innovative Applications of Energy Storage in a Restructured Electricity Marketplace. For this study, the authors assumed that it is feasible to operate an energy storage plant simultaneously for two primary applications: (1) energy arbitrage, i.e., buy-low-sell-high, and (2) to reduce peak loads in utility ''hot spots'' such that the utility can defer their need to upgrade transmission and distribution (T&D) equipment. The benefits from the arbitrage plus T&D deferral applications were estimated for five cases based on the specific requirements of two large utilities operating in the Eastern U.S. A number of parameters were estimated for the storage plant ratings required to serve the combined application: power output (capacity) and energy discharge duration (energy storage). In addition to estimating the various financial expenditures and the value of electricity that could be realized in the marketplace, technical characteristics required for grid-connected distributed energy storage used for capacity deferral were also explored.
Date: March 1, 2005
Creator: Eyer, James M. (Distributed Utility Associates, Livermore, CA); Erdman, Bill (Distributed Utility Associates, Livermore, CA) & Iannucci, Joseph J., Jr. (, . Distributed Utility Associates, Livermore, CA)
Partner: UNT Libraries Government Documents Department

Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

Description: This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.
Date: October 1, 2009
Creator: Eyer, James M. (Distributed Utility Associates, Livermore, CA)
Partner: UNT Libraries Government Documents Department

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

Description: This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.
Date: November 1, 2005
Creator: Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles & Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)
Partner: UNT Libraries Government Documents Department