176 Matching Results

Search Results


Description: The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program ...
Date: December 31, 2012
Creator: Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce & Lu, Na
Partner: UNT Libraries Government Documents Department

Fracture Toughness Testing of Plastics under Various Environmental Conditions

Description: The primary objective of this study is to test the applicability to plastics of a fracture toughness testing tool developed for metals. The intent is to study pre-test conditioning of several plastic materials and the effect of the depth of the razor notch cut in the chevron notched fracture toughness test specimens. The study includes the careful preparation of samples followed by conditioning in various environments. Samples were subjected to laboratory air for a specific duration or to a controlled temperature-humidity condition as per the ASTM D1870. Some of the samples were subjected to vacuum conditioning under standard test specifications. Testing was conducted using the conventional three-point bend test as per ASTM D5045-95. ASTM E1304, which sets a standard for short rod and bar testing of metals and ceramics provides some basis for conducting chevron notched four-point bend tests to duplicate the toughness tool. Correlation of these results with the ASTM test samples is determined. The four-point bend test involves less specimen machining as well as time to perform the fracture toughness tests. This study of fracture toughness testing has potential for quality control as well as the fracture property determination.
Date: December 1997
Creator: Velpuri, Seshagirirao V.
Partner: UNT Libraries

Evaluation Results of an E and ET Education Forum

Description: This article discusses evaluation results of an Engineering (E) and Engineering Technology (ET) education forum at the University of Houston. A central focus to these discussions revolved around whether Engineering and Engineering Technology exist as separate fields or whether there was value in thinking about them as part of a continuum.
Date: 2011
Creator: Ramos, Miguel; Chapman, Lauren; Cannady, Mac & Barbieri, Enrique
Partner: UNT College of Engineering

Kansas DOE/EPSCoR planning and traineeship grants: Final progress report

Description: In 1991, Kansas became the 18th state eligible for EPSCoR support, and it responded quickly to calls for planning proposals from DOE, NSF, and EPA. Planning process was carried out to improve the quality of scientific and engineering R&D in Kansas. All programs attempt to strengthen the intra- and inter-institutional ties to develop a critical mass of researchers in several areas. The following areas of excellence were selected for DOE/EPSCoR traineeships: atomic processes, electric power production, petroleum, high-energy physics, and energy alternative and efficiency.
Date: May 1, 1997
Partner: UNT Libraries Government Documents Department

Kansas State University DOE/KEURP Site Operator Program. Year 2, Second quarter report, October 1--December 31, 1992

Description: This concludes the sixth quarter that Kansas State University has been under contract to the US Department of Energy and the Kansas Electric Utility Research Program to demonstrate electric vehicle technology. The G-Van continues to perform within acceptable limits, although the batteries and the charger have caused some problems. Dave Harris, Chloride, has been working with K-State to correct these problems. It may very well be that the limited mileage (less than 25 miles) can be increased by extending the charge cycle (overcharging) the batteries. Soleq Corp. has failed to deliver contracted vehicles. A dual shaft electric propulsion minivan, built by Eaton Corp. in 1987, will be shipped here. On the infrastructure side, EHV Corp. is developing curbside and home charging stations.
Date: December 31, 1992
Creator: Hague, J. R.; Steinert, R. A.; Nissen-Pfrang, T. & Maier, M. A.
Partner: UNT Libraries Government Documents Department

Moisture design to improve durability of low-slope roofing systems

Description: The roofing industry has traditionally held that moisture control in low-slope roofing comprises two independent elements: (1) provide a waterproof exterior covering (or membrane) to protect the low-slope roof from external sources of moisture and (2) perform a condensation calculation to determine if a vapor retarder is required to protect a roof system from internal moisture sources. The first criterion is assumed to be satisfied if a membrane system is specified; in reality, all membrane systems eventually fail, and existing moisture control strategies offer no mechanism for analyzing the inevitable failure. The means of assessing the second criterion, the need for a vapor retarder, has evolved in recent years. The criteria have become more liberal with time because it has been observed that roofing systems installed in a geographic area in which the old criteria required a vapor retarder, have performed well without one.
Date: December 31, 1996
Creator: Desjarlais, A. & Byars, N.
Partner: UNT Libraries Government Documents Department

Pattern recognition using neural networks. Technical report, August 1, 1994--September 11, 1994

Description: I am pleased to submit the following technical report to Oak Ridge National Laboratories as an accomplishment of the 6 (six) week appointment in the U.S. Nuclear Regulatory Commission`s Historically Black College and Universities Faculty Research Participation Program, Summer 1994 (August - September 11, 1994). In this project, an approach for pattern recognition using neural networks is proposed. Particularly, a Boltzmann machine, a Hopfield neural net model, is used in pattern recognition with desirable learning ability. The Boltzmann machine features stochastic learning, which acts as the connection dynamics for determining the weights on the connections between the neuron-like cells (processing elements) of different layers in the neural network. An algorithm for pattern recognition using Boltzmann machine is also presented, which could be coded with C programming language or others to implement the approach for efficient pattern recognition. Finally, a follow-on research work derived from this project is planned if the author could win another summer appointment in 1995 from the Science/Engineering Education Division, Oak Ridge Institute for Science and Education, Oak Ridge National Laboratories.
Date: December 31, 1994
Creator: Ma, H.
Partner: UNT Libraries Government Documents Department

Development of a Coaxiality Indicator

Description: The geometric dimensioning and tolerancing concept of coaxiality is often required by design engineers for balance of rotating parts and precision mating parts. In current practice, it is difficult for manufacturers to measure coaxiality quickly and inexpensively. This study examines feasibility of a manually-operated, mechanical device combined with formulae to indicate coaxiality of a test specimen. The author designs, fabricates, and tests the system for measuring coaxiality of holes machined in a steel test piece. Gage Repeatability and Reproducibility (gage R&R) and univariate analysis of variance is performed in accordance with Measurement System Analysis published by AIAG. Results indicate significant design flaws exist in the current configuration of the device; observed values vary greatly with operator technique. Suggestions for device improvements conclude the research.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 1999
Creator: Arendsee, Wayne C.
Partner: UNT Libraries

Laser Cutting Machine: Justification of initial costs

Description: The Industrial Laser is firmly established in metalcutting as the tool of choice for many applications. The elevator division of Montgomery KONE Inc., in an effort to move towards quality, ontime, complete deliveries and 100% customer satisfaction, decided to invest in new equipment to improve manufacturing processes. A huge investment is proposed for a laser-cutting machine. It is the responsibility of Manufacturing Engineering to direct the management by justifying its benefits, which includes payback time and financial gains. Factors such as common line cutting, automated material handling system and cutting time were involved in justification of the initial cost of a laser-cutting machine. Comparative statistics on appropriate factors accurately determine and justify the initial cost of a laser-cutting machine.
Date: May 2001
Creator: Nagaraja, Dwarakish
Partner: UNT Libraries

University of North Texas President's Annual Report, 2009

Description: Annual report for the University of North Texas (UNT) includes an overview of research, programs of study, and accomplishments of university departments as well as statistical breakdowns of enrollment, fiscal expenditures, and other operational information.
Date: 2010
Creator: University of North Texas. Division of University Relations, Communications and Marketing.
Partner: UNT Libraries Special Collections

Analyzing the Effectiveness of Microlubrication Using a Vegetable Oil-Based Metal Working Fluid during End Milling AISI 1018 Steel

Description: This article describes a study in which a vegetable oil-based lubricant was used to conduct wear analysis and to analyze the effectiveness of microlubrication during end milling AISI 1018 steel.
Date: April 15, 2014
Creator: Shaikh, Vasim; Boubekri, Nourredine & Scharf, Thomas W.
Partner: UNT College of Engineering

Drive Level Dependence of Advanced Piezoelectric Resonators

Description: Resonators are one of the most important parts of electronic products. They provide a stable reference frequency to ensure the operation of these products. Recently, the electronic products have the trend of miniaturization, which rendered the size reduction of the resonators as well [1]. Better design of the resonators relies on a better understanding of the crystals' nonlinear behavior [2]. The nonlinearities affect the quality factor and acoustic behavior of MEMS (Micro-Electro-Mechanical-System) and nano-structured resonators and filters [3]. Among these nonlinear effects, Drivel Level Dependence (DLD), which describes the instability of the resonator frequency due to voltage level and/or power density, is an urgent problem for miniaturized resonators [2]. Langasite and GaPO4 are new promising piezoelectric material. Resonators made from these new materials have superior performance such as good frequency-temperature characteristics, and low acoustic loss [2]. In this thesis, experimental measurements of drive level dependence of langasite resonators with different configurations (plano-plano, single bevel, and double bevel) are reported. The drive level dependence of GaPO4 resonators are reported as well for the purpose of comparison. The results show that the resonator configuration affects the DLD of the langasite resonator. Experiments for DLD at elevated temperature are also performed, and it was found that the temperature also affects the DLD of the langasite resonator.
Date: August 2012
Creator: Xie, Yuan
Partner: UNT Libraries

Preliminary design of a cryogenic thermoelectric generator.

Description: A cryogenic thermoelectric generator is proposed to increase the efficiency of a vehicle propulsion system that uses liquid nitrogen as its fuel. The proposed design captures some of the heat required for vaporizing or initial heating of the liquid nitrogen to produce electricity. The thermoelectric generator uses pressurized liquid nitrogen as its cold reservoir and ambient air as the high-temperature reservoir to generate power. This study concentrated on the selection of thermoelectric materials whose properties would result in the highest efficiency over the operating temperature range and on estimating the initial size of the generator. The preliminary selection of materials is based upon their figure of merit at the operating temperatures. The results of this preliminary design investigation of the cryogenic thermoelectric generator indicate that sufficient additional energy can be used to increase overall efficiency of the thermodynamic cycle of a vehicle propulsion system.
Date: May 2007
Creator: Sivapurapu, Sai Vinay Kumar
Partner: UNT Libraries

Liquid Nitrogen Propulsion Systems for Automotive Applications: Calculation of Mechanical Efficiency of a Dual, Double-acting Piston Propulsion System

Description: A dual, double-acting propulsion system is analyzed to determine how efficiently it can convert the potential energy available from liquid nitrogen into useful work. The two double-acting pistons (high- and low-pressure) were analyzed by using a Matlab-Simulink computer simulation to determine their respective mechanical efficiencies. The flow circuit for the entire system was analyzed by using flow circuit analysis software to determine pressure losses throughout the system at the required mass flow rates. The results of the piston simulation indicate that the two pistons analyzed are very efficient at transferring energy into useful work. The flow circuit analysis shows that the system can adequately maintain the mass flow rate requirements of the pistons but also identifies components that have a significant impact on the performance of the system. The results of the analysis indicate that the nitrogen propulsion system meets the intended goals of its designers.
Date: May 2008
Creator: North, Thomas B.
Partner: UNT Libraries