47 Matching Results

Search Results

Effects of UE Speed on MIMO Channel Capacity in LTE

Description: With the introduction of 4G LTE, multiple new technologies were introduced. MIMO is one of the important technologies introduced with fourth generation. The main MIMO modes used in LTE are open loop and closed loop spatial multiplexing modes. This thesis develops an algorithm to calculate the threshold values of UE speed and SNR that is required to implement a switching algorithm which can switch between different MIMO modes for a UE based on the speed and channel conditions (CSI). Specifically, this thesis provides the values of UE speed and SNR at which we can get better results by switching between open loop and closed loop MIMO modes and then be scheduled in sub-channels accordingly. Thus, the results can be used effectively to get better channel capacity with less ISI. The main objectives of this thesis are: to determine the type of MIMO mode suitable for a UE with certain speed, to determine the effects of SNR on selection of MIMO modes, and to design and implement a scheduling algorithm to enhance channel capacity.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Shukla, Rahul
Partner: UNT Libraries

Anchor Nodes Placement for Effective Passive Localization

Description: Wireless sensor networks are composed of sensor nodes, which can monitor an environment and observe events of interest. These networks are applied in various fields including but not limited to environmental, industrial and habitat monitoring. In many applications, the exact location of the sensor nodes is unknown after deployment. Localization is a process used to find sensor node's positional coordinates, which is vital information. The localization is generally assisted by anchor nodes that are also sensor nodes but with known locations. Anchor nodes generally are expensive and need to be optimally placed for effective localization. Passive localization is one of the localization techniques where the sensor nodes silently listen to the global events like thunder sounds, seismic waves, lighting, etc. According to previous studies, the ideal location to place anchor nodes was on the perimeter of the sensor network. This may not be the case in passive localization, since the function of anchor nodes here is different than the anchor nodes used in other localization systems. I do extensive studies on positioning anchor nodes for effective localization. Several simulations are run in dense and sparse networks for proper positioning of anchor nodes. I show that, for effective passive localization, the optimal placement of the anchor nodes is at the center of the network in such a way that no three anchor nodes share linearity. The more the non-linearity, the better the localization. The localization for our network design proves better when I place anchor nodes at right angles.
Date: August 2010
Creator: Pasupathy, Karthikeyan
Partner: UNT Libraries

A Wireless Traffic Surveillance System Using Video Analytics

Description: Video surveillance systems have been commonly used in transportation systems to support traffic monitoring, speed estimation, and incident detection. However, there are several challenges in developing and deploying such systems, including high development and maintenance costs, bandwidth bottleneck for long range link, and lack of advanced analytics. In this thesis, I leverage current wireless, video camera, and analytics technologies, and present a wireless traffic monitoring system. I first present an overview of the system. Then I describe the site investigation and several test links with different hardware/software configurations to demonstrate the effectiveness of the system. The system development process was documented to provide guidelines for future development. Furthermore, I propose a novel speed-estimation analytics algorithm that takes into consideration roads with slope angles. I prove the correctness of the algorithm theoretically, and validate the effectiveness of the algorithm experimentally. The experimental results on both synthetic and real dataset show that the algorithm is more accurate than the baseline algorithm 80% of the time. On average the accuracy improvement of speed estimation is over 3.7% even for very small slope angles.
Date: May 2011
Creator: Luo, Ning
Partner: UNT Libraries

Effective and Accelerated Informative Frame Filtering in Colonoscopy Videos Using Graphic Processing Units

Description: Colonoscopy is an endoscopic technique that allows a physician to inspect the mucosa of the human colon. Previous methods and software solutions to detect informative frames in a colonoscopy video (a process called informative frame filtering or IFF) have been hugely ineffective in (1) covering the proper definition of an informative frame in the broadest sense and (2) striking an optimal balance between accuracy and speed of classification in both real-time and non real-time medical procedures. In my thesis, I propose a more effective method and faster software solutions for IFF which is more effective due to the introduction of a heuristic algorithm (derived from experimental analysis of typical colon features) for classification. It contributed to a 5-10% boost in various performance metrics for IFF. The software modules are faster due to the incorporation of sophisticated parallel-processing oriented coding techniques on modern microprocessors. Two IFF modules were created, one for post-procedure and the other for real-time. Code optimizations through NVIDIA CUDA for GPU processing and/or CPU multi-threading concepts embedded in two significant microprocessor design philosophies (multi-core design and many-core design) resulted a 5-fold acceleration for the post-procedure module and a 40-fold acceleration for the real-time module. Some innovative software modules, which are still in testing phase, have been recently created to exploit the power of multiple GPUs together.
Date: August 2010
Creator: Karri, Venkata Praveen
Partner: UNT Libraries

Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers

Description: Two applications of a binary tree data type based on a simple pairing function (a bijection between natural numbers and pairs of natural numbers) are explored. First, the tree is used to encode natural numbers, and algorithms that perform basic arithmetic computations are presented along with formal proofs of their correctness. Second, using this "canonical" representation as a base type, algorithms for encoding and decoding additional isomorphic data types of other mathematical constructs (sets, sequences, etc.) are also developed. An experimental application to a memory management system is constructed and explored using these isomorphic types. A practical analysis of this system's runtime complexity and space savings are provided, along with a proof of concept framework for both applications of the binary tree type, in the Java programming language.
Date: December 2011
Creator: Haraburda, David
Partner: UNT Libraries

Kalman Filtering Approach to Optimize OFDM Data Rate

Description: This study is based on applying a non-linear mapping method, here the unscented Kalman filter; to estimate and optimize data rate resulting from the arrival rate having a Poisson distribution in an orthogonal frequency division multiplexing (OFDM) transmission system. OFDM is an emerging multi-carrier modulation scheme. With the growing need for quality of service in wireless communications, it is highly necessary to optimize resources in such a way that the overall performance of the system models should rise while keeping in mind the objective to achieve high data rate and efficient spectral methods in the near future. In this study, the results from the OFDM-TDMA transmission system have been used to apply cross-layer optimization between layers so as to treat different resources between layers simultaneously. The main controller manages the transmission of data between layers using the multicarrier modulation techniques. The unscented Kalman filter is used here to perform nonlinear mapping by estimating and optimizing the data rate, which result from the arrival rate having a Poisson distribution.
Date: August 2011
Creator: Wunnava, Sashi Prabha
Partner: UNT Libraries

End of Insertion Detection in Colonoscopy Videos

Description: Colorectal cancer is the second leading cause of cancer-related deaths behind lung cancer in the United States. Colonoscopy is the preferred screening method for detection of diseases like Colorectal Cancer. In the year 2006, American Society for Gastrointestinal Endoscopy (ASGE) and American College of Gastroenterology (ACG) issued guidelines for quality colonoscopy. The guidelines suggest that on average the withdrawal phase during a screening colonoscopy should last a minimum of 6 minutes. My aim is to classify the colonoscopy video into insertion and withdrawal phase. The problem is that currently existing shot detection techniques cannot be applied because colonoscopy is a single camera shot from start to end. An algorithm to detect phase boundary has already been developed by the MIGLAB team. Existing method has acceptable levels of accuracy but the main issue is dependency on MPEG (Moving Pictures Expert Group) 1/2. I implemented exhaustive search for motion estimation to reduce the execution time and improve the accuracy. I took advantages of the C/C++ programming languages with multithreading which helped us get even better performances in terms of execution time. I propose a method for improving the current method of colonoscopy video analysis and also an extension for the same to make it usable for real time videos. The real time version we implemented is capable of handling streams coming directly from the camera in the form of uncompressed bitmap frames. Existing implementation could not be applied to real time scenario because of its dependency on MPEG 1/2. Future direction of this research includes improved motion search and GPU parallel computing techniques.
Date: August 2009
Creator: Malik, Avnish Rajbal
Partner: UNT Libraries

Study of the effects of background and motion camera on the efficacy of Kalman and particle filter algorithms.

Description: This study compares independent use of two known algorithms (Kalmar filter with background subtraction and Particle Filter) that are commonly deployed in object tracking applications. Object tracking in general is very challenging; it presents numerous problems that need to be addressed by the application in order to facilitate its successful deployment. Such problems range from abrupt object motion, during tracking, to a change in appearance of the scene and the object, as well as object to scene occlusions, and camera motion among others. It is important to take into consideration some issues, such as, accounting for noise associated with the image in question, ability to predict to an acceptable statistical accuracy, the position of the object at a particular time given its current position. This study tackles some of the issues raised above prior to addressing how the use of either of the aforementioned algorithm, minimize or in some cases eliminate the negative effects
Date: August 2009
Creator: Morita, Yasuhiro
Partner: UNT Libraries

Qos Aware Service Oriented Architecture

Description: Service-oriented architecture enables web services to operate in a loosely-coupled setting and provides an environment for dynamic discovery and use of services over a network using standards such as WSDL, SOAP, and UDDI. Web service has both functional and non-functional characteristics. This thesis work proposes to add QoS descriptions (non-functional properties) to WSDL and compose various services to form a business process. This composition of web services also considers QoS properties along with functional properties and the composed services can again be published as a new Web Service and can be part of any other composition using Composed WSDL.
Date: August 2013
Creator: Adepu, Sagarika
Partner: UNT Libraries

The Design Of A Benchmark For Geo-stream Management Systems

Description: The recent growth in sensor technology allows easier information gathering in real-time as sensors have grown smaller, more accurate, and less expensive. The resulting data is often in a geo-stream format continuously changing input with a spatial extent. Researchers developing geo-streaming management systems (GSMS) require a benchmark system for evaluation, which is currently lacking. This thesis presents GSMark, a benchmark for evaluating GSMSs. GSMark provides a data generator that creates a combination of synthetic and real geo-streaming data, a workload simulator to present the data to the GSMS as a data stream, and a set of benchmark queries that evaluate typical GSMS functionality and query performance. In particular, GSMark generates both moving points and evolving spatial regions, two fundamental data types for a broad range of geo-stream applications, and the geo-streaming queries on this data.
Date: December 2011
Creator: Shen, Chao
Partner: UNT Libraries

Baseband Noise Suppression in Ofdm Using Kalman Filter

Description: As the technology is advances the reduced size of hardware gives rise to an additive 1/f baseband noise. This additive 1/f noise is a system noise generated due to miniaturization of hardware and affects the lower frequencies. Though 1/f noise does not show much effect in wide band channels because of its nature to affect only certain frequencies, 1/f noise becomes a prominent in OFDM communication systems where narrow band channels are used. in this thesis, I study the effects of 1/f noise on the OFDM systems and implement algorithms for estimation and suppression of the noise using Kalman filter. Suppression of the noise is achieved by subtracting the estimated noise from the received noise. I show that the performance of the system is considerably improved by applying the 1/f noise suppression.
Date: May 2012
Creator: Rodda, Lasya
Partner: UNT Libraries

Leader-Follower Model and Impact of Mobility on Consensus Building

Description: Wireless sensor networks are an indispensable tool in this highly connected world. WSNs have been the focus of research efforts in areas of communication, electronics and control for many years. Advancements in the fields of MEMS, RF and digital circuit technology has led to the development of low cost and extremely power efficient smart sensors. This has led to the need of a fast, reliable and inexpensive method of consensus building for these sensor networks. Basic concepts of graph theory and consensus building are explained in this thesis. This thesis reviews the models and strategies for consensus building present in the literature. The shortcomings of these models are explained through examples and a leader-follower model based consensus building strategy is presented. Algorithm to convert any graph into a bipartite graph by edge removal and a strategy to select effective leaders based on a weighted combination of node centrality, ratio of leaders to the total number of nodes and presence of leaf nodes in the group is presented in this thesis. Proposed leader-follower model is compared against classic models for consensus building are compared and proven to be better. Mobility is studied using deterministic and random mobility models to show the improvement in convergence rate of the network. It is shown that mobility can turn any disconnected network into a connected network, which is able to reach consensus.
Date: May 2017
Creator: Singh, Ramanpreet
Partner: UNT Libraries

A Study of Mobility Models based on Spatial Node Distribution and Area Coverage

Description: Mobile wireless sensor networks are not widely implemented in the real world, even after years of research carried out in this field. One reason is the lack of understanding of the impact that mobility has on network performance. The simulation and emulation of mobile wireless sensor networks is necessary before they are deployed for the real-world applications. This thesis presents a simulation-based study of different mobility models. The total area coverage that depends on the pattern of node movements is observed through simulations. The spatial distribution of node locations is also studied. Various synthetic mobility models available are explored based on their theoretical descriptions. ‘BonnMotion' is used as the network simulator for investigating different mobility scenarios. The results obtained after simulations are imported to MATLAB and the analysis of node movements is done through various plots and inferences from the data. The comparison of mobility models is also discussed based on their spatial node distribution in the simulated scenarios.
Date: May 2017
Creator: Alla, Sindhu
Partner: UNT Libraries

Object Recognition Using Scale-Invariant Chordiogram

Description: This thesis describes an approach for object recognition using the chordiogram shape-based descriptor. Global shape representations are highly susceptible to clutter generated due to the background or other irrelevant objects in real-world images. To overcome the problem, we aim to extract precise object shape using superpixel segmentation, perceptual grouping, and connected components. The employed shape descriptor chordiogram is based on geometric relationships of chords generated from the pairs of boundary points of an object. The chordiogram descriptor applies holistic properties of the shape and also proven suitable for object detection and digit recognition mechanisms. Additionally, it is translation invariant and robust to shape deformations. In spite of such excellent properties, chordiogram is not scale-invariant. To this end, we propose scale invariant chordiogram descriptors and intend to achieve a similar performance before and after applying scale invariance. Our experiments show that we achieve similar performance with and without scale invariance for silhouettes and real world object images. We also show experiments at different scales to confirm that we obtain scale invariance for chordiogram.
Date: May 2017
Creator: Tonge, Ashwini Kishor
Partner: UNT Libraries

An Empirical Study of How Novice Programmers Use the Web

Description: Students often use the web as a source of help for problems that they encounter on programming assignments.In this work, we seek to understand how students use the web to search for help on their assignments.We used a mixed methods approach with 344 students who complete a survey and 41 students who participate in a focus group meetings and helped in recording data about their search habits.The survey reveals data about student reported search habits while the focus group uses a web browser plug-in to record actual search patterns.We examine the results collectively and as broken down by class year.Survey results show that at least 2/3 of the students from each class year rely on search engines to locate resources for help with their programming bugs in at least half of their assignments;search habits vary by class year;and the value of different types of resources such as tutorials and forums varies by class year.Focus group results exposes the high frequency web sites used by the students in solving their programming assignments.
Date: May 2016
Creator: Tula, Naveen
Partner: UNT Libraries

Simulink(R) Based Design and Implementation of a Solar Power Based Mobile Charger

Description: Electrical energy is used at approximately the rate of 15 Terawatts world-wide. Generating this much energy has become a primary concern for all nations. There are many ways of generating energy among which the most commonly used are non-renewable and will extinct much sooner than expected. Very active research is going on both to increase the use of renewable energy sources and to use the available energy with more efficiency. Among these sources, solar energy is being considered as the most abundant and has received high attention. The mobile phone has become one of the basic needs of modern life, with almost every human being having one.Individually a mobile phone consumes little power but collectively this becomes very large. This consideration motivated the research undertaken in this masters thesis. The objective of this thesis is to design a model for solar power based charging circuits for mobile phone using Simulink(R). This thesis explains a design procedure of solar power based mobile charger circuit using Simulink(R) which includes the models for the photo-voltaic array, maximum power point tracker, pulse width modulator, DC-DC converter and a battery.The first part of the thesis concentrates on electron level behavior of a solar cell, its structure and its electrical model.The second part is to design an array of solar cells to generate the desired output.Finally, the third part is to design a DC-DC converter which can stabilize and provide the required input to the battery with the help of the maximum power point tracker and pulse width modulation.The obtained DC-DC converter is adjustable to meet the requirements of the battery. This design is aimed at charging a lithium ion battery with nominal voltage of 3.7 V, which can be taken as baseline to charge different types of batteries with different nominal voltages.
Date: May 2016
Creator: Mukka, Manoj Kumar
Partner: UNT Libraries

Evaluation Techniques and Graph-Based Algorithms for Automatic Summarization and Keyphrase Extraction

Description: Automatic text summarization and keyphrase extraction are two interesting areas of research which extend along natural language processing and information retrieval. They have recently become very popular because of their wide applicability. Devising generic techniques for these tasks is challenging due to several issues. Yet we have a good number of intelligent systems performing the tasks. As different systems are designed with different perspectives, evaluating their performances with a generic strategy is crucial. It has also become immensely important to evaluate the performances with minimal human effort. In our work, we focus on designing a relativized scale for evaluating different algorithms. This is our major contribution which challenges the traditional approach of working with an absolute scale. We consider the impact of some of the environment variables (length of the document, references, and system-generated outputs) on the performance. Instead of defining some rigid lengths, we show how to adjust to their variations. We prove a mathematically sound baseline that should work for all kinds of documents. We emphasize automatically determining the syntactic well-formedness of the structures (sentences). We also propose defining an equivalence class for each unit (e.g. word) instead of the exact string matching strategy. We show an evaluation approach that considers the weighted relatedness of multiple references to adjust to the degree of disagreements between the gold standards. We publish the proposed approach as a free tool so that other systems can use it. We have also accumulated a dataset (scientific articles) with a reference summary and keyphrases for each document. Our approach is applicable not only for evaluating single-document based tasks but also for evaluating multiple-document based tasks. We have tested our evaluation method for three intrinsic tasks (taken from DUC 2004 conference), and in all three cases, it correlates positively with ROUGE. Based on our experiments ...
Date: August 2016
Creator: Hamid, Fahmida
Partner: UNT Libraries

Data-Driven Decision-Making Framework for Large-Scale Dynamical Systems under Uncertainty

Description: Managing large-scale dynamical systems (e.g., transportation systems, complex information systems, and power networks, etc.) in real-time is very challenging considering their complicated system dynamics, intricate network interactions, large scale, and especially the existence of various uncertainties. To address this issue, intelligent techniques which can quickly design decision-making strategies that are robust to uncertainties are needed. This dissertation aims to conquer these challenges by exploring a data-driven decision-making framework, which leverages big-data techniques and scalable uncertainty evaluation approaches to quickly solve optimal control problems. In particular, following techniques have been developed along this direction: 1) system modeling approaches to simplify the system analysis and design procedures for multiple applications; 2) effective simulation and analytical based approaches to efficiently evaluate system performance and design control strategies under uncertainty; and 3) big-data techniques that allow some computations of control strategies to be completed offline. These techniques and tools for analysis, design and control contribute to a wide range of applications including air traffic flow management, complex information systems, and airborne networks.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Xie, Junfei
Partner: UNT Libraries

Classifying Pairwise Object Interactions: A Trajectory Analytics Approach

Description: We have a huge amount of video data from extensively available surveillance cameras and increasingly growing technology to record the motion of a moving object in the form of trajectory data. With proliferation of location-enabled devices and ongoing growth in smartphone penetration as well as advancements in exploiting image processing techniques, tracking moving objects is more flawlessly achievable. In this work, we explore some domain-independent qualitative and quantitative features in raw trajectory (spatio-temporal) data in videos captured by a fixed single wide-angle view camera sensor in outdoor areas. We study the efficacy of those features in classifying four basic high level actions by employing two supervised learning algorithms and show how each of the features affect the learning algorithms’ overall accuracy as a single factor or confounded with others.
Date: May 2015
Creator: Janmohammadi, Siamak
Partner: UNT Libraries

Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics

Description: Epidemiologists rely on human interaction networks for determining states and dynamics of disease propagations in populations. However, such networks are empirical snapshots of the past. It will greatly benefit if human interaction networks are statistically predicted and dynamically created while an epidemic is in progress. We develop an application framework for the generation of human interaction networks and running epidemiological processes utilizing research on human mobility patterns and agent-based modeling. The interaction networks are dynamically constructed by incorporating different types of Random Walks and human rules of engagements. We explore the characteristics of the created network and compare them with the known theoretical and empirical graphs. The dependencies of epidemic dynamics and their outcomes on patterns and parameters of human motion and motives are encountered and presented through this research. This work specifically describes how the types and parameters of random walks define properties of generated graphs. We show that some configurations of the system of agents in random walk can produce network topologies with properties similar to small-world networks. Our goal is to find sets of mobility patterns that lead to empirical-like networks. The possibility of phase transitions in the graphs due to changes in the parameterization of agent walks is the focus of this research as this knowledge can lead to the possibility of disruptions to disease diffusions in populations. This research shall facilitate work of public health researchers to predict the magnitude of an epidemic and estimate resources required for mitigation.
Date: December 2016
Creator: Kolgushev, Oleg Mikhailovich
Partner: UNT Libraries

Unique Channel Email System

Description: Email connects 85% of the world. This paper explores the pattern of information overload encountered by majority of email users and examine what steps key email providers are taking to combat the problem. Besides fighting spam, popular email providers offer very limited tools to reduce the amount of unwanted incoming email. Rather, there has been a trend to expand storage space and aid the organization of email. Storing email is very costly and harmful to the environment. Additionally, information overload can be detrimental to productivity. We propose a simple solution that results in drastic reduction of unwanted mail, also known as graymail.
Date: August 2015
Creator: Balakchiev, Milko
Partner: UNT Libraries

Integrity Verification of Applications on RADIUM Architecture

Description: Trusted Computing capability has become ubiquitous these days, and it is being widely deployed into consumer devices as well as enterprise platforms. As the number of threats is increasing at an exponential rate, it is becoming a daunting task to secure the systems against them. In this context, the software integrity measurement at runtime with the support of trusted platforms can be a better security strategy. Trusted Computing devices like TPM secure the evidence of a breach or an attack. These devices remain tamper proof if the hardware platform is physically secured. This type of trusted security is crucial for forensic analysis in the aftermath of a breach. The advantages of trusted platforms can be further leveraged if they can be used wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such architecture, which is built on the strength of TPM. RADIUM provides an asynchronous root of trust to overcome the TOC condition of DRTM. Even though the underlying architecture is trusted, attacks can still compromise applications during runtime by exploiting their vulnerabilities. I propose an application-level integrity measurement solution that fits into RADIUM, to expand the trusted computing capability to the application layer. This is based on the concept of program invariants that can be used to learn the correct behavior of an application. I used Daikon, a tool to obtain dynamic likely invariants, and developed a method of observing these properties at runtime to verify the integrity. The integrity measurement component was implemented as a Python module on top of Volatility, a virtual machine introspection tool. My approach is a first step towards integrity attestation, using hypervisor-based introspection on RADIUM and a proof of concept of application-level measurement capability.
Date: August 2015
Creator: Tarigopula, Mohan Krishna
Partner: UNT Libraries

Radium: Secure Policy Engine in Hypervisor

Description: The basis of today’s security systems is the trust and confidence that the system will behave as expected and are in a known good trusted state. The trust is built from hardware and software elements that generates a chain of trust that originates from a trusted known entity. Leveraging hardware, software and a mandatory access control policy technology is needed to create a trusted measurement environment. Employing a control layer (hypervisor or microkernel) with the ability to enforce a fine grained access control policy with hyper call granularity across multiple guest virtual domains can ensure that any malicious environment to be contained. In my research, I propose the use of radium's Asynchronous Root of Trust Measurement (ARTM) capability incorporated with a secure mandatory access control policy engine that would mitigate the limitations of the current hardware TPM solutions. By employing ARTM we can leverage asynchronous use of boot, launch, and use with the hypervisor proving its state and the integrity of the secure policy. My solution is using Radium (Race free on demand integrity architecture) architecture that will allow a more detailed measurement of applications at run time with greater semantic knowledge of the measured environments. Radium incorporation of a secure access control policy engine will give it the ability to limit or empower a virtual domain system. It can also enable the creation of a service oriented model of guest virtual domains that have the ability to perform certain operations such as introspecting other virtual domain systems to determine the integrity or system state and report it to a remote entity.
Date: August 2015
Creator: Shah, Tawfiq M.
Partner: UNT Libraries

Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Description: Conventional pattern recognition systems have two components: feature analysis and pattern classification. For any object in an image, features could be considered as the major characteristic of the object either for object recognition or object tracking purpose. Features extracted from a training image, can be used to identify the object when attempting to locate the object in a test image containing many other objects. To perform reliable scene analysis, it is important that the features extracted from the training image are detectable even under changes in image scale, noise and illumination. Scale invariant feature has wide applications such as image classification, object recognition and object tracking in the image processing area. In this thesis, color feature and SIFT (scale invariant feature transform) are considered to be scale invariant feature. The classification, recognition and tracking result were evaluated with novel evaluation criterion and compared with some existing methods. I also studied different types of scale invariant feature for the purpose of solving scene analysis problems. I propose probabilistic models as the foundation of analysis scene scenario of images. In order to differential the content of image, I develop novel algorithms for the adaptive combination for multiple features extracted from images. I demonstrate the performance of the developed algorithm on several scene analysis tasks, including object tracking, video stabilization, medical video segmentation and scene classification.
Date: August 2011
Creator: Shen, Yao
Partner: UNT Libraries