6,157 Matching Results

Search Results

Remote Sensing and GIS for Nonpoint Source Pollution Analysis in the City of Dallas' Eastern Watersheds

Description: This report describes the findings of a study conducted on the Eastern Watersheds of Lake Lavon, Lake Ray Hubbard, Lake Tawakoni, Lake Palestine and Lake Fork, which are located within the Blackland Prairie, Post Oak Savannah and Pineywoods provinces. These watersheds are among nine that provide drinking water to Dallas, Texas. The study examines the potential benefit of "remote sensing and geographic information systems (GIS) for watershed management" in these five watersheds (p. iii).
Date: June 1989
Creator: University of North Texas. Department of Biological Sciences.
Partner: UNT College of Arts and Sciences

Remote Sensing and GIS for Nonpoint Source Pollution Analysis in the City of Dallas' Western Watersheds

Description: This report describes the findings of a study conducted on the watersheds of "Lake Lewisville, Lake Ray Roberts, Lake Grapevine and the Elm Fork of the Trinity River between Lake Lewisville and Frazier Dam," which are all part of the upper Trinity drainage basin (p. 31). The study examines the potential benefit of "remote sensing and geographic information systems (GIS) for watershed management" in and around Dallas, Texas (p. i).
Date: August 1988
Creator: University of North Texas. Department of Biological Sciences.
Partner: UNT College of Arts and Sciences

The BIOSCI electronic newsgroup network for the biological sciences. Final report, October 1, 1992--June 30, 1996

Description: This is the final report for a DOE funded project on BIOSCI Electronic Newsgroup Network for the biological sciences. A usable network for scientific discussion, major announcements, problem solving, etc. has been created.
Date: October 1, 1996
Creator: Kristofferson, D. & Mack, D.
Partner: UNT Libraries Government Documents Department

Biological Sciences for the 21st Century: Meeting the Challenges of Sustainable Development in an Era of Global Change

Description: The symposium was held 10-12 May, 2007 at the Capitol Hilton Hotel in Washington, D. C. The 30 talks explored how some of today's key biological research developments (such as biocomplexity and complex systems analysis, bioinformatics and computational biology, the expansion of molecular and genomics research, and the emergence of other comprehensive or system wide analyses, such as proteomics) contribute to sustainability science. The symposium therefore emphasized the challenges facing agriculture, human health, sustainable energy, and the maintenance of ecosystems and their services, so as to provide a focus and a suite of examples of the enormous potential contributions arising from these new developments in the biological sciences. This symposium was the first to provide a venue for exploring how the ongoing advances in the biological sciences together with new approaches for improving knowledge integration and institutional science capacity address key global challenges to sustainability. The speakers presented new research findings, and identified new approaches and needs in biological research that can be expected to have substantial impacts on sustainability science.
Date: May 12, 2007
Creator: Cracraft, Joel & O'Grady, Richard
Partner: UNT Libraries Government Documents Department

Sweetpotato Diseases

Description: Revised edition. There are two classes of sweet potato diseases, 1) field troubles (which are either root and stem diseases or leaf diseases), and 2) storage rots. Root and stem diseases include stem-rot, black-rot, foot-rot, scurf, and root-rot; and leaf disease, leaf-blight, white-rust, and leaf-spot. There are many methods of control for field diseases which are discussed. Control of the five storage rots described hinges on careful storage-house management.
Date: 1955
Creator: United States. Agricultural Research Service. Horticultural Crops Research Branch.
Partner: UNT Libraries Government Documents Department

Genetics in the courts

Description: Various: (1)TriState 2000 Genetics in the Courts (2) Growing impact of the new genetics on the courts (3)Human testing (4) Legal analysis - in re G.C. (5) Legal analysis - GM ''peanots'', and (6) Legal analysis for State vs Miller
Date: December 1, 2000
Creator: Coyle, Heather & Drell, Dan
Partner: UNT Libraries Government Documents Department

ENHANCED PRODUCTION OF CELLULASE, HEMICELLULASE AND {beta}-GLUCOSIDASE BY TRICHODERMA REESEI (RUT-C-30)

Description: The production of cellulases and hemicellulases was studied wi·th Trichoderrna reesei Rut-C-30. This organism produced, together with high cellulase activities, considerable amounts of xylanases and {beta}-glucosidase. Three cellulose concentrations (1, 2.5 and 5.0%) were examined to determine the maximum levels of cellulase activity obtainable in submerged culture. Temperature and pH profiling to increase viable cell mass to maximum levels and thereby enhancing fermentor productivity at the higher substrate levels is discussed. The effect of temperature, pH, Tween~80 concentration, carbon source and substrate concentration on the rates of mycelial growth and extra-cellular enzyme production are described.
Date: June 1, 1980
Creator: Tangnu, S.Kishen; Blanch, Harvey W. & Wilke, Charles R.
Partner: UNT Libraries Government Documents Department

Nanoimaging to Prevent and Treat Alzheimer’s and Parkinson’s Diseases. Scientific/Technical report

Description: This project will develop innovative approaches to characterization of the very early stages of protein aggregation that eventually can be translated to the development of early diagnostic tools and efficient treatments for Alzheimer’s, Parkinson’s and Huntington’s diseases. Funding will be used to acquire nanoimaging technology for nanoscale imaging, manipulation and analysis of biomedical materials to develop treatments that will repair disabled proteins and cure diseases that result from protein malfunction, specifically Alzheimer’s and Parkinson’s diseases. Expected outcomes include tests for early diagnosis and therapeutic treatments for these devastating neurological diseases. To elucidate the mechanisms of protein misfolding, we will establish an extensive program of experimental studies using a broad arsenal of advanced nanoscale and traditional techniques that will be integrated with molecular-scale modeling of protein misfolding and the nucleation of aggregate structures. To identify intracellular machinery or/and multicomponent complexes critically involved in protein misfolding, we will characterize interactions between targeted proteins and specific intracellular components or metabolites that impact on protein conformational pathways leading to protein misfolding accompanied by formation of toxic aggregated morphologies. To design innovative nanotechnology tools for the control of intracellular protein misfolding and aggregation processes, we will develop a predictive molecular scale model for intracellular protein misfolding and the formation of toxic aggregates. Verified through experimental studies, the objective is to establish an enabling foundation for the engineering of novel molecular diagnostics and therapeutics for various cellular pathologies.
Date: December 20, 2012
Creator: Yuri L. Lyubchenko, PhD, DSc
Partner: UNT Libraries Government Documents Department

Plasminogen activator inhibitor 1: Mechanisms of its synergistic regulation by growth factors

Description: My research is on the synergistic regulation of PAI-1 by EGF and TGF-β. The mechanism of synergistic regulation of PAI-1 by EGF and TGF-β are addressed. Methods are described for effective identification of RNA accessible sites for antisense oligodexoxynucleotides (ODNs) and siRNA. In this study effective AS-ODN sequences for both Lcn2 and Bcl2 were identified by in vitro tiled microarray studies. Our results suggest that hybridization of ODN arrays to a target mRNA under physiological conditions might be used as a rapid and reliable in vitro method to accurately identify targets on mRNA molecules for effective antisense and potential siRNA activity in vivo.
Date: December 1, 2011
Creator: Song, Xiaoling
Partner: UNT Libraries Government Documents Department

Imaging gene expression in real-time using aptamers

Description: Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging microscopy). Real-time transcription was measured by FLIM-FRET, which ...
Date: December 13, 2011
Creator: Shin, Il Chung
Partner: UNT Libraries Government Documents Department

Fourteenth-Sixteenth Microbial Genomics Conference-2006-2008

Description: The concept of an annual meeting on the E. coli genome was formulated at the Banbury Center Conference on the Genome of E. coli in October, 1991. The first meeting was held on September 10-14, 1992 at the University of Wisconsin, and this was followed by a yearly series of meetings, and by an expansion to include The fourteenth meeting took place September 24-28, 2006 at Lake Arrowhead, CA, the fifteenth September 16-20, 2007 at the University of Maryland, College Park, MD, and the sixteenth September 14-18, 2008 at Lake Arrowhead. The full program for the 16th meeting is attached. There have been rapid and exciting advances in microbial genomics that now make possible comparing large data sets of sequences from a wide variety of microbial genomes, and from whole microbial communities. Examining the “microbiomes”, the living microbial communities in different host organisms opens up many possibilities for understanding the landscape presented to pathogenic microorganisms. For quite some time there has been a shifting emphasis from pure sequence data to trying to understand how to use that information to solve biological problems. Towards this end new technologies are being developed and improved. Using genetics, functional genomics, and proteomics has been the recent focus of many different laboratories. A key element is the integration of different aspects of microbiology, sequencing technology, analysis techniques, and bioinformatics. The goal of these conference is to provide a regular forum for these interactions to occur. While there have been a number of genome conferences, what distinguishes the Microbial Genomics Conference is its emphasis on bringing together biology and genetics with sequencing and bioinformatics. Also, this conference is the longest continuing meeting, now established as a major regular annual meeting. In addition to its coverage of microbial genomes and biodiversity, the meetings also highlight microbial communities ...
Date: April 18, 2011
Creator: Miller, Jeffrey H
Partner: UNT Libraries Government Documents Department

Fundamental Studies of Recombinant Hydrogenases

Description: This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.
Date: January 25, 2014
Creator: Adams, Michael W
Partner: UNT Libraries Government Documents Department

Information on a Major New Initiative: Mapping and Sequencing the Human Genome (1986 DOE Memorandum)

Description: In the history of the Human Genome Program, Dr. Charles DeLisi and Dr. Alvin Trivelpiece of the Department of Energy (DOE) were instrumental in moving the seeds of the program forward. This May 1986 memo from DeLisi to Trivelpiece, director of DOE's Office of Energy Research, documents this fact. Following the March 1986 Santa Fe workshop on the subject of mapping and sequencing the human genome, Delisi's memo outlines workshop conclusions, explains the relevance of this project to DOE and the importance of the Department's laboratories and capabilities, notes the critical experience of DOE in managing projects of this scale and potential magnitude, and recognizes the fact that the project will impact biomedical science in ways which could not be fully anticipated at the time. Subsequently, program guidance was further sought from the DOE Health Effects Research Advisory Committee (HERAC) and the April 1987 HERAC report recommmended that DOE and the nation commit to a large, multidisciplinary, scientific and technological undertaking to map and sequence the human genome.
Date: May 6, 1986
Creator: DeLisi, Charles (Associate Director, Heath and Environmental Research, DOE Office of Energy Research)
Partner: UNT Libraries Government Documents Department

INTERACTION OF BENZO(A)PYRENE DIOL EPOXIDE WITH SVAO MINICHROMOSOMES

Description: SV40 minichromosomes were reacted with (+)7{beta},8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide). Low levels of modification (< 5 DNA adducts/minichromosome) did not detectably alter the structure of the minichromosomes but high levels (> 200 DNA adducts/minichromosome) led to extensive fragmentation. Relative to naked SV40 DNA BaP diol epoxide induced alkylation and strand scission of minichromosomal DNA was reduced or enhanced by factors of 1.5 and 2.0, respectively. The reduction in covalent binding was attributed to the presence of histones, which competed with DNA for the hydrocarbon and reduced the probability of BaP diol epoxide intercalation by tightening the helix. The enhancement of strand scission was probably due to the catalytic effect of histones on the rate of S-elimination at apurinic sites, although an altered adduct profile or the presence of a repair endonuclease were not excluded. Staphylococcal nuclease digestion indicated that BaP dial epoxide randomly alkylated the minichromosomal DNA. This is in contrast to studies with cellular chromatin where internucleosomal DNA was preferentially modified. Differences in the minichromosomal protein complement were responsible for this altered susceptibility.
Date: March 1, 1980
Creator: Gamper, Howard B.; Yokota, Hisao A. & Bartholomew, James C.
Partner: UNT Libraries Government Documents Department

AMINO ACID SYNTHESIS IN PHOTO-SYNTHESIZING SPINACH CELLS. EFFECTS OF AMMONIA ON POOL SIZES AND RATES OF LABELING FROM {sup 14}CO{sub 2}

Description: Isolated cells from leaves of Spinacea oleracea have been maintained in a state capable of high rates of photosynthetic CO{sub 2} fixation for more than 60 h. The incorporation of {sup 14}CO{sub 2} under saturating CO{sub 2} conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity and pool size have been determined as a function of time for most of the protein amino acids and for {gamma}-aminobutyric acid. the measurements of specific activities and of the approaches to {sup 14}C "saturation" of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. Different amino acids were, however, affected in different and highly specific ways. Ammonia caused large stimulatory effects in incorporation of {sup 14}C into glutamine (a factor of 16), No effect or slight decreases were seen in glycine, serine, phenylalanine, and tyrosine labeling, In.the case of glutamate, {sup 14}C-labeling decreased, but specific activity increased. The production of labeled {gamma}-aminobutyric acid was virtually stopped by ammonia. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific activities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on such synthesis.
Date: October 1, 1980
Creator: Larsen, Peder Olesen; Cornwell, Karen L.; Gee, Sherry L. & Bassham, James A.
Partner: UNT Libraries Government Documents Department

CELL CYCLE SYNCHRONIZATION OF MOUSE LIVER EPITHELIAL CELLS BY ELUTRIATION CENTRIFUGATION

Description: Detailed methods are described for the sorting and cell cycle synchronization by means of centrifugal elutriation of an established mouse liver epithelial cell line(NMuLi). In a comparison between three different elutriation media and between two different temperatures(4° and 20° C), the NMuLi cells were found to be most reproducibly sorted in the cell cycle when run in growth medium in the absence of serum and at the lower temperature. Under these conditions. and using decrements of rotor speed calculated from an empirically derived algorithm as described in the text an initially asynchronous population (38% G{sub 1}, 36% S, and 28% G{sub 2}M) was sorted into fractions enriched to 60% G{sub 1}, 75% S, and 50% G{sub 2}M. Of the cells loaded into the rotor, 30% were lost in the elutriation process, and about 20% recovered as aggregates. The remainder appeared in the various synchronized fractions. Epithelial cells sorted in this manner demonstrated no loss of viability, and upon replating showed significant movement in the cell cycle by 6 hrs post elutriation. The degree of synchronous movement through the cell cycle achieved by elutriation depended on the part of the cell cycle from which the original elutriated fraction came. Cells collected as late S and G{sub 2}M moved through the cell cycle with the tightest sychrony.
Date: June 1, 1980
Creator: Pearlman, Andrew L. & Bartholomew, James C.
Partner: UNT Libraries Government Documents Department

CHROMOPEPTIDES FROM PHYTOCHROME. THE STRUCTURE AND LINKAGE OF THE P{sub R} FORM OF THE PHYTOCHROME CHROMOPHORE

Description: The isolation and chromatographic purification of chromophore-containing peptides from the P{sub R} form of phytochrome treated with pepsin and thermolysin are described. From the amino acid sequence and {sup 1}H NMR spectral analysis of phytochromobiliundeca peptide (2) , the structure of the P{sub R) phytochrome chromophore and the nature of the thioether linkage joining pigment to peptide have been established. Confirmatory evidence was obtained from similar analysis of phytochromobilioctapeptide (3) . The implications of this structural assignment with respect to the mechanism of the P{sub R} to P{sub FR} phototransformation is considered.
Date: December 1, 1979
Creator: Lagarias, J.C. & Rapoport, H.
Partner: UNT Libraries Government Documents Department

THE ISOLATION AND CHARACTERIZATION OF PYRIMIDINE-PSORALEN PHOTOADDUCTS FROM DNA

Description: We have examined the photoadducts of 4'-hydroxymethyl- 4,5',8-trirnethylpsoralen (HMT) and native DNA. Five DNA-HMT monoaddition products have been isolated and characterized, corresponding to three deoxythymidine-HMT and two deoxyuridine (derived from deoxycytidine) -HMT adducts. Structural assignments are based on high resolution mass spectrometry and {sup 1}H NMR studies, including homonuclear spin decoupling and nuclear Overhauser effect (NOE) experiments. The results of this study indicate that (1) a limited number of nucleoside-psoralen adducts are formed with native, double-stranded DNA, and (2) the stereochemistry of the adducts is apparently determined by the geomertry of the non-covalent intercalative complex formed by HMT and DNA prior to irradiation.
Date: September 1, 1980
Creator: Straub, Kenneth; Kanne, David; Hearst, John E. & Rapoport, Henry
Partner: UNT Libraries Government Documents Department

SHORT-TERM MEMORY IS INDEPENDENT OF BRAIN PROTEIN SYNTHESIS

Description: Male Swiss albino CD-1 mice given a single injection of a cerebral protein synthesis inhibitor, anisomycin (ANI) (1 mg/animal), 20 min prior to single trial passive avoidance training demonstrated impaired retention at tests given 3 hr, 6 hr, 1 day, and 7 days after training. Retention was not significantly different from saline controls when tests were given 0.5 or 1.5 hr after training. Prolonging inhibition of brain protein synthesis by giving either 1 or 2 additional injections of ANI 2 or 2 and 4 hr after training did not prolong short-term retention performance. The temporal development of impaired retention in ANI treated mice could not be accounted for by drug dosage, duration of protein synthesis inhibition, or nonspecific sickness at test. In contrast to the suggestion that protein synthesis inhibition prolongs short-term memory (Quinton, 1978), the results of this experiment indicate that short-term memory is not prolonged by antibiotic drugs that inhibit cerebral protein synthesis. All evidence seems consistent with the hypothesis that short-term memory is protein synthesis independent and that the establishment of long-term memory depends upon protein synthesis during or shortly after training. Evidence for a role of protein synthesis in memory maintenance is discussed.
Date: September 1, 1980
Creator: Davis, Hasker P.; Rosenzweig, Mark R. & Jones, Oliver W.
Partner: UNT Libraries Government Documents Department