91 Matching Results

Search Results

Prediction of Partition Coeffecients and Permeability of Drug Molecules in Biological Systems with Abraham Model Solute Descriptors Derived from Measured Solubilities and Water-to-Organic Solvent Partition Coefficients

Description: Book chapter on the prediction of partition coefficients and permeability of drug molecules in biological systems with Abraham model solute descriptors derived from measured solubilities and water-to-organic solvent partition coefficients.
Date: February 10, 2012
Creator: Acree, William E. (William Eugene); Grubbs, Laura M. & Abraham, M. H. (Michael H.)
Partner: UNT College of Arts and Sciences

Thermochemical Investigation of Ternary Nonelectrolyte Mixtures

Description: Excess molar volumes have been determined for four ternary chlorobenzene + dibutyl ether + alkane mixtures at 25°C. Results of these measurements are used to test the applications and limitations of BAB, Redlich-Kister, Kohler and Hwang et al. cubic models. For the systems studied, Redlich- Kister, Kohler and Cubic models were found to provide reasonable predictions. Differences between experimental and predicted ΔV^ex_123 values were about ±0.020 cm^3mol^-1 or less at most ternary compositions. Solubilities are reported for anthracene in binary mixtures containing propanol and butanol with alkanes at 25°C. Results of these measurements are used to test the NIBS/Redlich-Kister expression. The three-parameter form of this expression is found to provide reasonable mathematical representation with deviations between experimental and back-calculated values being less than ±1%.
Date: December 1992
Creator: Teng, I-Lih
Partner: UNT Libraries

Spectrofluorometric Probe Methods for Examining Preferential Solvation in Binary Mixtures

Description: Spectrofluorometric probe methods are developed and examined regarding their ability to model preferential solvation around probe molecules in binary solvents. The first method assumes that each fluorophore is solvated by only one type of solvent molecule and that each fluorophore contributes to the emission intensity. Expressions for this model are illustrated using fluorescence behavior of pyrene, benzo[e]pyrene, benzo[ghi]perylene, and coronene dissolved in binary n-heptane + 1,4-dioxane and n-heptane + tetrahydrofuran mixtures. The second method treats the solvational sphere as a binary solvent microsphere, with the fluorophore's energy in both the ground and the excited states mathematically expressed using the "nearly ideal binary solvent" (NIBS) model. Expressions derived from this model are illustrated using fluorescence behavior of 9,9'-bianthracene and 9,9*-bianthracene-10-carboxaldehyde in binary toluene + acetonitrile and dibutyl ether + acetonitrile.
Date: August 1994
Creator: Wilkins, Denise C.
Partner: UNT Libraries

Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Raman Spectroscopy Imaging of Biological Tissues

Description: Laser Ablation Inductively coupled plasma mass spectrometry (LA-ICP-MS) and Raman spectroscopy are both powerful imaging techniques. Their applications are numerous and extremely potential in the field of biology. In order to improve upon LA-ICP-MS an in-house built cold cell was developed and its effectiveness studied by imaging Brassica napus seeds. To further apply LA-ICP-MS and Raman imaging to the field of entomology a prong gilled mayfly (Ephemeroptera: Leptophlebiidae) from the Róbalo River, located on Navarino Island in Chile, was studied. Analysis of both samples showcased LA-ICP-MS and Raman spectroscopy as effective instruments for imaging trace elements and larger molecules in biological samples respectively.
Date: May 2016
Creator: Gorishek, Emma
Partner: UNT Libraries

Substitution Effects of Phenothiazine and Porphyrin Dyes in Dye-sensitized Solar Cells

Description: The details of dye sensitized solar cells was explained and phenothiazine and porphyrin based dyes were synthesized for use in DSSCs. DSSCs offer a unique and cost effective method of renewable energy. DSSCs are characterized through various tests, with the overall efficiency, η, bearing the greatest importance. Incident photon to current conversion efficiency, or IPCE, is also another important characterization of DSSCs. Effect of positioning of the cyanoacrylic acid anchoring group on ring periphery of phenothiazine dye on the performance of dye sensitized solar cells (DSSCs) is reported. The performances of the cells are found to be prominent for solar cells made out of Type-1 dyes compared to Type-2 dyes. This trend has been rationalized based on spectral, electrochemical, computational and electrochemical impedance spectroscopy results. Free-base and zinc porphyrins bearing a carboxyl anchoring group at the para, meta, or ortho positions of one of the meso-phenyl rings were synthesized for DSSCs. Photoelectrochemical studies were performed after immobilization of porphyrins onto nanocrystalline TiO2. The performance of DSSCs with the porphyrin anchoring at the para or meta position were found to greatly exceed those in the ortho position. Additionally, zinc porphyrin derivatives outperformed the free-base porphyrin analogs, including better dye regeneration efficiency for the zinc porphyrin derivatives and for the meta and para derivatives through electrochemical impedance spectroscopy studies. The overall structure-performance trends observed for the present porphyrin DSSCs have been rationalized based on spectral, electrochemical, electrochemical impedance spectroscopy and transient spectroscopy results.
Date: December 2013
Creator: Hart, Aaron S.
Partner: UNT Libraries

Synthesis of Gold Complexes From Diphosphine Ligands and Screening Reactions of Heterocyclic Acetylacetonato (ACAC) Ligands with Transitional Metal Complexes

Description: Syntheses of diphosphine gold (I) complexes from gold THT and two ligands, 4, 5-bis (diphenylphosphino)-4-cyclopenten-1, 3-dione (BPCD) and 2,3-bis(diphenylphosphino)-N-phenylmaleimide (BPPM), were done separately. The reactions happened under ice conditions followed by room temperature conditions and produced two diphosphine gold (I) complexes in moderated yield. Spectroscopic results including nuclear magnetic resonance (NMR) and X-ray crystallography were used to study and determine the structures of the products formed. Moreover, X-rays of all newly synthesized diphosphine gold (I) complexes were compared with the known X-ray structures of other phosphine and diphosphine gold (I) complexes. There were direct resemblances in terms of bond length and angle between these new diphosphine gold (I) complex structures and those already published. For instance, the bond lengths and angles from the newly prepared diphosphine gold (I) complexes were similar to those already published. Where there were some deviations in bond angles and length between the newly synthesized structures and those already published, appropriate explanation was given to explain the deviation. Heterocyclic ligands bearing acetylacetonate (ACAC) side arm(s) were prepared from ethyl malonyl chloride and the heterocyclic compounds 8-hydroxylquinoline, Syn-2-peridoxyaldoxime, quinoxalinol and 2, 6-dipyridinylmethanol. The products (heterocyclic ACAC ligands) from these reactions were screened with transition metal carbonyl compounds in thermolytic reactions. The complexes formed were studied and investigated using NMR and X-ray crystallography. Furthermore, the X-ray structures of the heterocyclic ACAC ligand or ligand A and that of rhenium complex 1 were compared with similar published X-ray structures. The comparison showed there were some similarities in terms of bond length and bond angles.
Date: August 2015
Creator: Nyamwihura, Rogers
Partner: UNT Libraries

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Description: The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH ≥ 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The deposits were examined and characterized by XRD.
Date: December 2009
Creator: Conrad, Heidi A.
Partner: UNT Libraries

Mobile Order Theory as Applied to Polycyclic Aromatic Heterocycles

Description: Experimental mole fraction solubilities of benzil, thianthrene, trans-stilbene, thioxanthen-9-one, diphenyl sulfone and dibenzothiophene sulfone are determined in pure noncomplexing and complexing solvents. Predicted solubility values are calculated for benzil, thianthrene, trans-stilbene and thioxanthen-9-one using expressions derived from Mobile Order theory. Large deviations between experimental and predicted solubilities in alcohol solvents exist, therefore optimized solute - solvent association constants are determined. Previously measured thianthrene solubilities in five binary alkane + cyclohexane solvent mixtures are compared with values predicted from Mobile Order theory using the measured solubility in each of the pure solvents as input parameters. The experimental mole fraction solubility of benzil in eight binary alcohol + 1-octanol solvent mixtures are also measured and compared with predicted values.
Date: August 1997
Creator: Fletcher, Kristin A.
Partner: UNT Libraries

Investigation of Ultratrace Metallic and Organic Contaminants in Semiconductor Processing Environments

Description: Detection of ultratrace levels of metallic ion impurities in hydrofluoric acid solutions and alkaline hydrogen peroxide solution was demonstrated using a silicon-based sensing electrode. The sensor's operation principle is based on direct measurements of the silicon open-circuit potential shift generated by the interaction between metallic ions and the silicon-based sensing surface. The new sensor can have practical applications in the on-line monitoring of microelectronic chemical processing. The detection of Ag+ content in KODAK waste water was carried out successfully by this novel sensor. Trace levels of organic impurities in the hydrofluoric acid solutions and in the cleanroom air were characterized by multiple internal reflection infrared spectroscopy (MIRIS) using an organics probe prepared directly from a regular silicon wafer.
Date: May 1997
Creator: Xu, Fei, 1971-
Partner: UNT Libraries

Investigation of Copper Out-Plating Mechanism on Silicon Wafer Surface

Description: As the miniaturization keeps decreasing in semiconductor device fabrication, metal contamination on silicon surfaces becomes critical. An investigation of the fundamental mechanism of metal contamination process on silicon surface is therefore important. Kinetics and thermodynamics of the copper out-plating process on silicon surfaces in diluted HF solutions are both evaluated by several analytical methods.
Date: August 1995
Creator: Chien, Hsu-Yueh
Partner: UNT Libraries

Thermodynamics of Mobile Order Theory: Solubility and Partition Aspects

Description: The purpose of this thesis is to analyze the thermochemical properties of solutes in nonelectrolyte pure solvents and to develop mathematical expressions with the ability to describe and predict solution behavior using mobile order theory. Solubilities of pesticides (monuron, diuron, and hexachlorobenzene), polycyclic aromatic hydrocarbons (biphenyl, acenaphthene, and phenanthrene), and the organometallic ferrocene were studied in a wide array of solvents. Mobile order theory predictive equations were derived and percent average absolute deviations between experimental and calculated mole fraction solubilities for each solute were as follows: monuron in 21 non-alcoholic solvents (48.4%), diuron in 28 non-alcoholic solvents (60.1%), hexachlorobenzene (210%), biphenyl (13.0%), acenaphthene (37.8%), phenanthrene (41.3%), and ferrocene (107.8%). Solute descriptors using the Abraham solvation model were also calculated for monuron and diuron. Coefficients in the general solvation equation were known for all the solvents and solute descriptors calculated using multilinear regression techniques.
Date: August 2004
Creator: De Fina, Karina M.
Partner: UNT Libraries

Synthesis and Characterization of Copper Releasing Polymer Nanoparticles

Description: Polymeric nanoparticles were synthesized and loaded with Cu²⁺ to explore the therapeutic potential for catically active transition metal ions and complexes other than cisplatin. Two types of nanoparticles were synthesized to show the potential for polymer based vectors. Copper loading and release were characterized via inductively coupled plasma mass spectrometry (ICP MS), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and elemental analysis. Results demonstrated that Cu could be loaded to the nano-sized carriers in an aqueous environment, and that the release was pH-dependent. The toxicity of these particles was measured in HeLa cells where significant toxicity was observed in vitro via dosing of high Cu-loaded nanoparticles. No significant toxicity was observed in cells dosed with Cu-free nanoparticles.
Date: May 2011
Creator: Harris, Alesha N.
Partner: UNT Libraries

Homework versus daily quizzes: The effects on academic performance within high school pre-AP chemistry.

Description: This research proposed to evaluate whether homework or daily quizzes were better for academic success within high-school pre-AP chemistry or if differences in the two methods were detectable. The study involved two years of data where homework was assigned and graded and one year of data where homework was suggested but daily quizzes provided the assessment. The mean of each of the unit tests were evaluated and t-tests were calculated. The results showed that over two-thirds of the units had statistically significant data when daily quizzes were utilized.
Date: August 2010
Creator: King, Jo Laurie Marushia
Partner: UNT Libraries

Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects

Description: Experimental mole fraction solubilities of several carboxylic acids (2-methoxybenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid,2-methylbenzoic acid and ibuprofen) and 9-fluorenone, thianthrene and xanthene were measured in a wide range of solvents of varying polarity and hydrogen-bonding characteristics. Results of these measurements were used to calculate gas-to-organic solvent and water-to-organic solvent solubility ratios, which were then substituted into known Abraham process partitioning correlations. The molecular solute descriptors that were obtained as the result of these computations described the measured solubility data to within an average absolute deviation of 0.2 log units. The calculated solute descriptors also enable one to estimate many chemically, biologically and pharmaceutically important properties for the ten solutes studied using published mathematical correlations.
Date: August 2006
Creator: Stovall, Dawn Michele
Partner: UNT Libraries

Synthesis and Characterization of Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(dichloride), Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione(maleonitriledithiolate), and Platinum(II)(4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(4-Methyl-1,2-benzene dithiol)

Description: Substitution of the 1,5-cyclooctadiene (cod) ligand in PtCl2(cod) (1) by the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) yields PtCl2(bpcd) (2). Knoevenagel condensation of 2 with 9-anthracenecarboxaldehyde leads to the functionalization of the bpcd ligand and formation of the corresponding 2-(9-anthracenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (abpcd) substituted compound PtCl2(abpcd) (3), which is also obtained from the direct reaction of 1 with the abpcd ligand in near quantitative yield. The reaction of 3 with disodium maleonitriledithiolate (Na2mnt) affords the chelating dithiolate compound Pt(mnt)(abpcd) (4). The reaction of PtCl2(bpcd) (2) with 4-methyl-1,2-benzene dithiol under basic conditions affords Pt(tdt)(bpcd) (5). Compounds 2-5 have been fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and their molecular structures established by X-ray crystallography. The electrochemical properties of 2‑5 have examined by cyclic voltammetry, and the nature of the HOMO and LUMO levels in systems 2-4 has been established by MO calculations at the extended Hückel level, the results of which are discussed with respect to electrochemical data and related diphosphine derivatives. In addition the new compounds 2-5 have been isolated by column chromatography and characterized by IR, UV-Vis spectroscopy.
Date: December 2009
Creator: Hunt, Sean W.
Partner: UNT Libraries

The preparation and characterization of thermo-sensitive colored hydrogel film and surfactant-free porous polystyrene three-dimensional network.

Description: Polymer hydrogel films change their properties in response to environmental change. This remarkable phenomenon results in many potential applications of polymer hydrogel films. In this thesis colored thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel film was prepared by firstly synthesizing polymer latex and secondarily crosslinking the nanoparticles and casting the polymers onto glass. The shape-memory effect has been observed when changing the environmental temperature. The temperature-dependent of turbidity of polymer hydrogel film was measured by HP UVVisible spectrophotometer. This intelligent hydrogel might be used in chemomechanical systems and separation devices as well as sensors. Polymer adsorption plays an important role in many products and processes. In this thesis, surfactant-free three-dimensional polystyrene (PS) nanoparticle network has been prepared. The infrared spectroscopy and solubility experiment are performed to prove the crosslinking mechanism, also the BET method was used to measure the adsorption and desorption of polystyrene network. The BET constant (C) is calculated (C=6.32). The chemically bonded polymer nanoparticle network might have potential applications as catalyst or used for chromatographic columns.
Date: December 2001
Creator: Zhou, Bo
Partner: UNT Libraries

Applications of Nanomanipulation Coupled to Nanospray Mass Spectrometry in Trace Fiber Analysis and Cellular Lipid Analysis.

Description: The novel instrumentation of nanomanipulation coupled to nanospray mass spectrometry and its applications are presented. The nanomanipulator has the resolution of 10nm step sizes allowing for specific fine movement used to probe and characterize objects of interest. Nanospray mass spectrometry only needs a minimum sample volume of 300nl and a minimum sample size of 300attograms to analyze an analyte making it the ideal instrument to couple to nanomanipulation. The nanomanipulator is mounted to an inverted microscope and consists of 4 nano-positioners; these nano-positioners hold end-effectors and other tools used for manipulation. This original coupling has been used to enhance the current abilities of cellular probing and trace fiber analysis. Experiments have been performed to demonstrate the functionality of this instrument and its capabilities. Histidine and caffeine have been sampled directly from single fibers and analyzed. Lipid bodies from cotton seeds have been sampled indirectly and analyzed. The few applications demonstrated are only the beginning of nanomanipulation coupled to nanospray mass spectrometry and the possible applications are numerous especially with the ability to design and fabricate new end-effectors with unique abilities. Future study will be done to further the applications in direct cellular probing including toxicology studies and organelle analysis of single cells. Further studies will be directed in forensic applications of this instrument including gunshot residue sampled from fibers.
Date: December 2008
Creator: Ledbetter, Nicole
Partner: UNT Libraries

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Description: The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict more accurate results by increasing the samples with effective functional groups.
Date: May 2012
Creator: Wang, Zhouxing
Partner: UNT Libraries

Synthetic and Structural Chemistry of Ligand-substituted Triosmium Clusters and a Rhenium(i) Complex

Description: The reaction of 2-[(diphenylphosphino)methyl]-6-methylpyridine (PN) with Os3(CO)12-n(MeCN)n [where n = 0 (1), 1 (2), 2 (3)] has been investigated. Os3(CO)12 reacts with PN in the presence of Me3NO to afford the clusters Os3(CO)11(1-PN) (4) and 1,2-Os3(CO)10(1-PN)2 (5). X-ray diffraction analyses confirm the equatorial coordination of the phosphine(s) in 4 and 5, with the two phosphines in the latter cluster exhibiting a 1,2-trans orientation about the Os-Os vector that contains the two ligands. Treatment of the MeCN-substituted cluster Os3(CO)11(MeCN) and PN (1:1 ratio) in CH2Cl2 gives clusters 4 and 5, in addition to HOs3(η1-Cl)(CO)10(1-PN) (6) as a result of competitive activation of the reaction solvent. Cluster 6 contains 48e- and the diffraction structure reveals the presence of axial chloride and equatorial phosphine ligands which are located on adjacent osmium atoms. The bridging hydride ligand in 6 spans the Cl,P-substituted Os-Os vector. The reaction of Os3(CO)10(MeCN)2 with PN furnishes 5, 6, and 1,1-Os3(CO)10(2-PN) (7) in yields that are dependent on the reagent stoichiometry and reaction solvent. The solid-state structure of 7 confirms the chelation of the PN ligand to a single osmium atom via the pyridine and phosphine moieties at axial and equatorial sites, respectively. The bonding in 7 relative to other possible stereoisomers has been explored by DFT calculations, and the diffraction structure is computed as the thermodynamically most stable form of this cluster. Cluster 4 is photosensitive and CO loss gives 7, in addition to the formation of the dihydride H2Os3(CO)8[µ-CH(NC5H3)CH2PPh2] (8), whose origin derives from the double metalation of the C-6 methyl group of the PN ligand in 7. Photolysis of 7 yields 8 without detectable observation of the expected intermediate hydride HOs3(CO)9[µ-CH2(NC5H3)CH2PPh2]. The PN ligand in 7 undergoes P-C bond activation in toluene at 110 °C to afford the 50e cluster Os3(CO)9(µ-C6H4)(µ-PPh), which contains face-capping benzyne and phosphinidene ...
Date: August 2013
Creator: Lin, Chen-Hao
Partner: UNT Libraries

Solderability Study of Tin/Lead Alloy Under Steam-Aging Treatment by Electrochemical Reduction Analysis and Wetting Balance Tests

Description: Two types of solder samples, pins and through-holes were tested by SERA™ (Sequential Electrochemical Reduction Analysis) and Wetting Balance after various length of steamaging treatment. It was shown that after steam-aging, both types of specimen gave a similar electrochemical reduction curve, and solderabilty predictions made from SERA™ test agree with results obtained from Wetting Balance test on a qualitative base. Wetting balance test of pin samples after SERA™ test confirmed that SERA™ is a non-destructive testing method -- it even restored solderability. Comparison of electrochemical reduction behavior of samples under different treatment indicates that steam-aging can not reproduce exactly the effect of naturally atmospheric aging, and may not be the best artificial accelerating environment adopted.
Date: May 1993
Creator: Gao, Yang, 1966-
Partner: UNT Libraries

The Development of Predictive Models for the Acid Degradation of Chrysotile Asbestos

Description: The purpose of this study was to determine the factors affecting the acid degradation of chrysotile asbestos (Mg_3Si_2O_5(OH_4)) . Millions of tons of asbestos have found use in this country as insulative or ablative material. More than 95 percent of the asbestos in use is of the chrysotile variety. The remaining 5 percent is composed of various types of fibrous amphiboles. The inhalation of asbestos can lead to several diseases in humans. Asbestosis, lung cancer and mesothelioma are the most common afflictions associated with asbestos inhalation, and they may occur up to 40 years after the initial exposure. It has previously been reported that if more than 50 percent of the magnesium is removed from a chrysotile sample its carcinogenicity is reduced to nil. Several inorganic acids were studied to determine their ability to leach magnesium from chrysotile. It was found that the ability to leach magnesium was dependent upon the acidic anion in addition to the concentration of the acid. The ordering of the efficiency of the acids in their ability to remove magnesium from chrysotile was found to be HCl > H_2SO_4 > H_3PO_4 > HNO_3. Predictive equations were developed to allow the calculation of the amount of magnesium removed under various acid concentrations as a function of time and acid species. The effects of temperature and dissolved spectator cations upon the degradation process were also examined. There was no major effect on the amount of magnesium removed as a function of spectator cation concentration. An infrared method was also developed to allow the determination of the percent degradation of a chrysotile sample directly. The shifts in the positions of three silicate stretching peaks (1068 cm^-1, 948 cm^-1 and 715 cm^-1) and one magnesium oxygen stretching peak (415 cm"1) as a function of the percent magnesium removed were ...
Date: May 1993
Creator: Ingram, Kevin D. (Kevin Dean)
Partner: UNT Libraries

Substitution Chemistry of the Cobalt Complexes [Co₂(CO)₆(PhC≡CR) (R=Ph, H) and PhCCo₃(CO)₉] with the Diphosphine Ligands [Bis(diphenylphosphino)maleic Anhydride (BMA) and (Z)-Ph₂PCH=CHPPh₂]. Reversible Chelate-to-Bridge Diphosphine Ligand Exchange, Phosphorus-Carbon Bond Cleavage and Phosphorus-Carbon Bond Formation

Description: The tricobalt cluster PhCCo3(CO)9 (1) reacts with the bidentate phosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) in the presence of added Me3NO to give the diphosphine-substituted cluster PhCCo3(CO)7(bma) (2). Cluster 2 is unstable in solution, readily losing CO to afford Co3(CO)6[(μ2-η2/η1-C(Ph)C=C(PPh2)C(O)OC(O)](μ2-PPh2) (3) as the sole observed product. VT-31P NMR measurements on cluster 2 indicate that the bma ligand functions as both a chelating and a bridging ligand. At -97 °C, 31P NMR analysis of 2 reveals a Keq of 5.7 in favor of the bridging isomer. The bridged bma cluster 2 is the only observed species above -50°C. The solid-state structure of 2 does not correspond to the major bridging isomer observed in solution but rather the minor chelating isomer. The conversion of 2 to 3 followed first-order kinetics, with the reaction rates being independent of the nature of the reaction solvent and strongly suppressed by added CO, supporting a dissociative loss of CO as the rate-determining step. The activation parameters for CO loss were determined to be ΔH≠ = 29.9 ± 2.2 kcal/mol and ΔS≠ = 21.6 ± 6 eu.
Date: December 1994
Creator: Yang, Kaiyuan
Partner: UNT Libraries

Spectroscopic Properties of Polycyclic Aromatic Compounds

Description: The fluorescence spectrum of many polycyclic aromatic compounds (PACs) depends upon solvent polarity. The emission spectrum of PAC monomers consists of several major vibronic bands labeled I, II, etc., in progressive order. Emission intensity enhancement of select bands is observed in polar solvents.
Date: May 1994
Creator: Tucker, Sheryl A. (Sheryl Ann)
Partner: UNT Libraries