Search Results

Prediction of Partition Coeffecients and Permeability of Drug Molecules in Biological Systems with Abraham Model Solute Descriptors Derived from Measured Solubilities and Water-to-Organic Solvent Partition Coefficients

Description: Book chapter on the prediction of partition coefficients and permeability of drug molecules in biological systems with Abraham model solute descriptors derived from measured solubilities and water-to-organic solvent partition coefficients.
Date: February 10, 2012
Creator: Acree, William E. (William Eugene); Grubbs, Laura M. & Abraham, M. H. (Michael H.)
Item Type: Book Chapter
Partner: UNT College of Arts and Sciences

Mobile Order Theory as Applied to Polycyclic Aromatic Heterocycles

Description: Experimental mole fraction solubilities of benzil, thianthrene, trans-stilbene, thioxanthen-9-one, diphenyl sulfone and dibenzothiophene sulfone are determined in pure noncomplexing and complexing solvents. Predicted solubility values are calculated for benzil, thianthrene, trans-stilbene and thioxanthen-9-one using expressions derived from Mobile Order theory. Large deviations between experimental and predicted solubilities in alcohol solvents exist, therefore optimized solute - solvent association constants are determined. Previously measured thianthrene solubilities in five binary alkane + cyclohexane solvent mixtures are compared with values predicted from Mobile Order theory using the measured solubility in each of the pure solvents as input parameters. The experimental mole fraction solubility of benzil in eight binary alcohol + 1-octanol solvent mixtures are also measured and compared with predicted values.
Date: August 1997
Creator: Fletcher, Kristin A.
Partner: UNT Libraries

Investigation of Ultratrace Metallic and Organic Contaminants in Semiconductor Processing Environments

Description: Detection of ultratrace levels of metallic ion impurities in hydrofluoric acid solutions and alkaline hydrogen peroxide solution was demonstrated using a silicon-based sensing electrode. The sensor's operation principle is based on direct measurements of the silicon open-circuit potential shift generated by the interaction between metallic ions and the silicon-based sensing surface. The new sensor can have practical applications in the on-line monitoring of microelectronic chemical processing. The detection of Ag+ content in KODAK waste water was carried out successfully by this novel sensor. Trace levels of organic impurities in the hydrofluoric acid solutions and in the cleanroom air were characterized by multiple internal reflection infrared spectroscopy (MIRIS) using an organics probe prepared directly from a regular silicon wafer.
Date: May 1997
Creator: Xu, Fei, 1971-
Partner: UNT Libraries

Investigation of Copper Out-Plating Mechanism on Silicon Wafer Surface

Description: As the miniaturization keeps decreasing in semiconductor device fabrication, metal contamination on silicon surfaces becomes critical. An investigation of the fundamental mechanism of metal contamination process on silicon surface is therefore important. Kinetics and thermodynamics of the copper out-plating process on silicon surfaces in diluted HF solutions are both evaluated by several analytical methods.
Date: August 1995
Creator: Chien, Hsu-Yueh
Partner: UNT Libraries

Thermodynamics of Mobile Order Theory: Solubility and Partition Aspects

Description: The purpose of this thesis is to analyze the thermochemical properties of solutes in nonelectrolyte pure solvents and to develop mathematical expressions with the ability to describe and predict solution behavior using mobile order theory. Solubilities of pesticides (monuron, diuron, and hexachlorobenzene), polycyclic aromatic hydrocarbons (biphenyl, acenaphthene, and phenanthrene), and the organometallic ferrocene were studied in a wide array of solvents. Mobile order theory predictive equations were derived and percent average absolute deviations between experimental and calculated mole fraction solubilities for each solute were as follows: monuron in 21 non-alcoholic solvents (48.4%), diuron in 28 non-alcoholic solvents (60.1%), hexachlorobenzene (210%), biphenyl (13.0%), acenaphthene (37.8%), phenanthrene (41.3%), and ferrocene (107.8%). Solute descriptors using the Abraham solvation model were also calculated for monuron and diuron. Coefficients in the general solvation equation were known for all the solvents and solute descriptors calculated using multilinear regression techniques.
Date: August 2004
Creator: De Fina, Karina M.
Partner: UNT Libraries

Synthesis and Characterization of Copper Releasing Polymer Nanoparticles

Description: Polymeric nanoparticles were synthesized and loaded with Cu²⁺ to explore the therapeutic potential for catically active transition metal ions and complexes other than cisplatin. Two types of nanoparticles were synthesized to show the potential for polymer based vectors. Copper loading and release were characterized via inductively coupled plasma mass spectrometry (ICP MS), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and elemental analysis. Results demonstrated that Cu could be loaded to the nano-sized carriers in an aqueous environment, and that the release was pH-dependent. The toxicity of these particles was measured in HeLa cells where significant toxicity was observed in vitro via dosing of high Cu-loaded nanoparticles. No significant toxicity was observed in cells dosed with Cu-free nanoparticles.
Date: May 2011
Creator: Harris, Alesha N.
Partner: UNT Libraries

Homework versus daily quizzes: The effects on academic performance within high school pre-AP chemistry.

Description: This research proposed to evaluate whether homework or daily quizzes were better for academic success within high-school pre-AP chemistry or if differences in the two methods were detectable. The study involved two years of data where homework was assigned and graded and one year of data where homework was suggested but daily quizzes provided the assessment. The mean of each of the unit tests were evaluated and t-tests were calculated. The results showed that over two-thirds of the units had statistically significant data when daily quizzes were utilized.
Date: August 2010
Creator: King, Jo Laurie Marushia
Partner: UNT Libraries

Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects

Description: Experimental mole fraction solubilities of several carboxylic acids (2-methoxybenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid,2-methylbenzoic acid and ibuprofen) and 9-fluorenone, thianthrene and xanthene were measured in a wide range of solvents of varying polarity and hydrogen-bonding characteristics. Results of these measurements were used to calculate gas-to-organic solvent and water-to-organic solvent solubility ratios, which were then substituted into known Abraham process partitioning correlations. The molecular solute descriptors that were obtained as the result of these computations described the measured solubility data to within an average absolute deviation of 0.2 log units. The calculated solute descriptors also enable one to estimate many chemically, biologically and pharmaceutically important properties for the ten solutes studied using published mathematical correlations.
Date: August 2006
Creator: Stovall, Dawn Michele
Partner: UNT Libraries

Synthesis and Characterization of Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(dichloride), Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione(maleonitriledithiolate), and Platinum(II)(4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(4-Methyl-1,2-benzene dithiol)

Description: Substitution of the 1,5-cyclooctadiene (cod) ligand in PtCl2(cod) (1) by the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) yields PtCl2(bpcd) (2). Knoevenagel condensation of 2 with 9-anthracenecarboxaldehyde leads to the functionalization of the bpcd ligand and formation of the corresponding 2-(9-anthracenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (abpcd) substituted compound PtCl2(abpcd) (3), which is also obtained from the direct reaction of 1 with the abpcd ligand in near quantitative yield. The reaction of 3 with disodium maleonitriledithiolate (Na2mnt) affords the chelating dithiolate compound Pt(mnt)(abpcd) (4). The reaction of PtCl2(bpcd) (2) with 4-methyl-1,2-benzene dithiol under basic conditions affords Pt(tdt)(bpcd) (5). Compounds 2-5 have been fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and their molecular structures established by X-ray crystallography. The electrochemical properties of 2‑5 have examined by cyclic voltammetry, and the nature of the HOMO and LUMO levels in systems 2-4 has been established by MO calculations at the extended Hückel level, the results of which are discussed with respect to electrochemical data and related diphosphine derivatives. In addition the new compounds 2-5 have been isolated by column chromatography and characterized by IR, UV-Vis spectroscopy.
Date: December 2009
Creator: Hunt, Sean W.
Partner: UNT Libraries

The preparation and characterization of thermo-sensitive colored hydrogel film and surfactant-free porous polystyrene three-dimensional network.

Description: Polymer hydrogel films change their properties in response to environmental change. This remarkable phenomenon results in many potential applications of polymer hydrogel films. In this thesis colored thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel film was prepared by firstly synthesizing polymer latex and secondarily crosslinking the nanoparticles and casting the polymers onto glass. The shape-memory effect has been observed when changing the environmental temperature. The temperature-dependent of turbidity of polymer hydrogel film was measured by HP UVVisible spectrophotometer. This intelligent hydrogel might be used in chemomechanical systems and separation devices as well as sensors. Polymer adsorption plays an important role in many products and processes. In this thesis, surfactant-free three-dimensional polystyrene (PS) nanoparticle network has been prepared. The infrared spectroscopy and solubility experiment are performed to prove the crosslinking mechanism, also the BET method was used to measure the adsorption and desorption of polystyrene network. The BET constant (C) is calculated (C=6.32). The chemically bonded polymer nanoparticle network might have potential applications as catalyst or used for chromatographic columns.
Date: December 2001
Creator: Zhou, Bo
Partner: UNT Libraries

Spectrofluorometric Probe Methods for Examining Preferential Solvation in Binary Mixtures

Description: Spectrofluorometric probe methods are developed and examined regarding their ability to model preferential solvation around probe molecules in binary solvents. The first method assumes that each fluorophore is solvated by only one type of solvent molecule and that each fluorophore contributes to the emission intensity. Expressions for this model are illustrated using fluorescence behavior of pyrene, benzo[e]pyrene, benzo[ghi]perylene, and coronene dissolved in binary n-heptane + 1,4-dioxane and n-heptane + tetrahydrofuran mixtures. The second method treats the solvational sphere as a binary solvent microsphere, with the fluorophore's energy in both the ground and the excited states mathematically expressed using the "nearly ideal binary solvent" (NIBS) model. Expressions derived from this model are illustrated using fluorescence behavior of 9,9'-bianthracene and 9,9*-bianthracene-10-carboxaldehyde in binary toluene + acetonitrile and dibutyl ether + acetonitrile.
Date: August 1994
Creator: Wilkins, Denise C.
Partner: UNT Libraries

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Description: The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH ≥ 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The deposits were examined and characterized by XRD.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2009
Creator: Conrad, Heidi A.
Partner: UNT Libraries

Applications of Nanomanipulation Coupled to Nanospray Mass Spectrometry in Trace Fiber Analysis and Cellular Lipid Analysis.

Description: The novel instrumentation of nanomanipulation coupled to nanospray mass spectrometry and its applications are presented. The nanomanipulator has the resolution of 10nm step sizes allowing for specific fine movement used to probe and characterize objects of interest. Nanospray mass spectrometry only needs a minimum sample volume of 300nl and a minimum sample size of 300attograms to analyze an analyte making it the ideal instrument to couple to nanomanipulation. The nanomanipulator is mounted to an inverted microscope and consists of 4 nano-positioners; these nano-positioners hold end-effectors and other tools used for manipulation. This original coupling has been used to enhance the current abilities of cellular probing and trace fiber analysis. Experiments have been performed to demonstrate the functionality of this instrument and its capabilities. Histidine and caffeine have been sampled directly from single fibers and analyzed. Lipid bodies from cotton seeds have been sampled indirectly and analyzed. The few applications demonstrated are only the beginning of nanomanipulation coupled to nanospray mass spectrometry and the possible applications are numerous especially with the ability to design and fabricate new end-effectors with unique abilities. Future study will be done to further the applications in direct cellular probing including toxicology studies and organelle analysis of single cells. Further studies will be directed in forensic applications of this instrument including gunshot residue sampled from fibers.
Date: December 2008
Creator: Ledbetter, Nicole
Partner: UNT Libraries

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Description: The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict more accurate results by increasing the samples with effective functional groups.
Date: May 2012
Creator: Wang, Zhouxing
Partner: UNT Libraries

Synthetic and Structural Chemistry of Ligand-substituted Triosmium Clusters and a Rhenium(i) Complex

Description: The reaction of 2-[(diphenylphosphino)methyl]-6-methylpyridine (PN) with Os3(CO)12-n(MeCN)n [where n = 0 (1), 1 (2), 2 (3)] has been investigated. Os3(CO)12 reacts with PN in the presence of Me3NO to afford the clusters Os3(CO)11(1-PN) (4) and 1,2-Os3(CO)10(1-PN)2 (5). X-ray diffraction analyses confirm the equatorial coordination of the phosphine(s) in 4 and 5, with the two phosphines in the latter cluster exhibiting a 1,2-trans orientation about the Os-Os vector that contains the two ligands. Treatment of the MeCN-substituted cluster Os3(CO)11(MeCN) and PN (1:1 ratio) in CH2Cl2 gives clusters 4 and 5, in addition to HOs3(η1-Cl)(CO)10(1-PN) (6) as a result of competitive activation of the reaction solvent. Cluster 6 contains 48e- and the diffraction structure reveals the presence of axial chloride and equatorial phosphine ligands which are located on adjacent osmium atoms. The bridging hydride ligand in 6 spans the Cl,P-substituted Os-Os vector. The reaction of Os3(CO)10(MeCN)2 with PN furnishes 5, 6, and 1,1-Os3(CO)10(2-PN) (7) in yields that are dependent on the reagent stoichiometry and reaction solvent. The solid-state structure of 7 confirms the chelation of the PN ligand to a single osmium atom via the pyridine and phosphine moieties at axial and equatorial sites, respectively. The bonding in 7 relative to other possible stereoisomers has been explored by DFT calculations, and the diffraction structure is computed as the thermodynamically most stable form of this cluster. Cluster 4 is photosensitive and CO loss gives 7, in addition to the formation of the dihydride H2Os3(CO)8[µ-CH(NC5H3)CH2PPh2] (8), whose origin derives from the double metalation of the C-6 methyl group of the PN ligand in 7. Photolysis of 7 yields 8 without detectable observation of the expected intermediate hydride HOs3(CO)9[µ-CH2(NC5H3)CH2PPh2]. The PN ligand in 7 undergoes P-C bond activation in toluene at 110 °C to afford the 50e cluster Os3(CO)9(µ-C6H4)(µ-PPh), which contains face-capping benzyne and phosphinidene ...
Date: August 2013
Creator: Lin, Chen-Hao
Partner: UNT Libraries

Chemical Equilibria in Binary Solvents

Description: Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Date: August 1997
Creator: McHale, Mary E. R.
Partner: UNT Libraries

Free Radical Induced Oxidation, Reduction and Metallization of NiSi and Ni(Pt)Si Surfaces

Description: NiSi and Ni(Pt)Si, and of the effects of dissociated ammonia on oxide reduction was carried out under controlled ultrahigh vacuum (UHV) conditions. X-ray photoelectron spectroscopy (XPS) has been used to characterize the evolution of surface composition. Vicinal surfaces on NiSi and Ni(Pt)Si were formed in UHV by a combination of Ar+ sputtering and thermal annealing. Oxidation of these surfaces in the presence of either O+O2 or pure O2 at room temperature results in the initial formation of a SiO2 layer ~ 7 Å thick. Subsequent exposure to O2 yields no further oxidation. Continued exposure to O+O2, however, results in rapid silicon consumption and, at higher exposures, the kinetically-driven oxidation of the transition metal(s), with oxides >35Ǻ thick formed on all samples, without passivation. The addition of Pt retards but does not eliminate oxide growth or Ni oxidation. At higher exposures, in Ni(Pt)Si surface the kinetically-limited oxidation of Pt results in Pt silicate formation. Substrate dopant type has almost no effect on oxidation rate. Reduction of the silicon oxide/metal silicate is carried out by reacting with dissociated NH3 at room temperature. The reduction from dissociated ammonia (NHx+H) on silicon oxide/ metal silicate layer shows selective reduction of the metal oxide/silicate layer, but does not react with SiO2 at ambient temperature.
Date: August 2010
Creator: Manandhar, Sudha
Partner: UNT Libraries

A Quenchofluorometric Study of Polycyclic Aromatic Hydrocarbons in Molecularly Organized Media

Description: Detection, identification and separation of polycyclic aromatic compounds in environmental samples are of extreme importance since many of these compounds are well known for their potential carcinogenic and/or mutagenic activities. Selective quenching of molecular fluorescence can be utilized effectively to analyze mixtures containing different polycyclic aromatic hydrocarbons. Molecularly organized assemblies are used widely in detection and separation of these compounds mainly because of less toxicity and enhanced solubilization capabilities associated with these media. Feasibility of using nitromethane and the alkylpyridinium cation as selective fluorescence quenching agents for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is critically examined in several molecularly organized micellar solvent media. Fluorescence quenching is used to probe the structural features in mixed micelles containing the various combinations of anionic, cationic, nonionic and zwitterionic surfactants. Experimental results provide valuable information regarding molecular interactions between the dissimilar surfactants.
Date: May 1998
Creator: Pandey, Siddharth
Partner: UNT Libraries

Fabrication and light scattering study of multi-responsive nanostructured hydrogels and water-soluble polymers.

Description: Monodispersed microgels composed of poly-acrylic acid (PAAc) and poly(N-isopropylacrylamide) (PNIPAM) interpenetrating networks were synthesized by 2-step method with first preparing PNIPAM microgel and then polymerizing acrylic acid that interpenetrates into the PNIPAM network. The semi-dilute aqueous solutions of the PNIPAM-PAAc IPN microgels exhibit an inverse thermo-reversible gelation. Furthermore, IPN microgels undergo the reversible volume phase transitions in response to both pH and temperature changes associated to PAAc and PNIPAM, respectively. Three applications based on this novel hydrogel system are presented: a rich phase diagram that opens a door for fundamental study of phase behavior of colloidal systems, a thermally induced viscosity change, and in situ hydrogel formation for controlled drug release. Clay-polymer hydrogel composites have been synthesized based on PNIPAM gels containing 0.25 to 4 wt% of the expandable smectic clay Na-montmorillonite layered silicates (Na-MLS). For Na-MLS concentrations ranging from 2.0 to 3.2 wt%, the composite gels have larger swelling ratio and stronger mechanical strength than those for a pure PNIPAM. The presence of Na-MLS does not affect the value of the lower critical solution temperature (LCST) of the PNIPAM. Surfactant-free hydroxypropyl cellulose (HPC) microgels have been synthesized in salt solution. In a narrow sodium chloride concentration range from 1.3 to 1.4 M, HPC chains can self-associate into colloidal particles at room temperature. The microgel particles were then obtained in situ by bonding self-associated HPC chains at 23 0C using divinyl sulfone as a cross-linker. The volume phase transition of the resultant HPC microgels has been studied as a function of temperature at various salt concentrations. A theoretical model based on Flory-Huggins free energy consideration has been used to explain the experimental results. Self-association behavior and conformation variation of long chain branched (LCB) poly (2-ethyloxazoline) (PEOx) with a CH3-(CH2)17 (C18) modified surface are investigated using light scattering techniques in various ...
Date: December 2003
Creator: Xia, Xiaohu
Partner: UNT Libraries

Effects of Using Logic and Spatial Cybergames to Improve Student Success Rates in Lower-Division Chemistry Courses

Description: A study was conducted to investigate the relationships between cybergaming treatment groups and the control group (N = 99: ncontrol = 8; nlogic = 29; nspatial = 30; ncombination = 32) with success in the organic chemistry I course as measured by achievement over a 10-week period. The treatment groups included logic training, spatial training, and combination logic-spatial training. Students' ability was measured by pre/post exams using the Group Assessment of Logical Thinking (GALT) to measure logic ability, Purdue Visualizations of Rotations (ROT) test to measure spatial skills, and the General-Organic-Biochemistry (GOB) Exam to measure content attainment. Finally, students' responses about participation in this experience were evaluated using open- and closed-ended questions on a self-developed survey. A second study was conducted to evaluate the relationship between the cybergaming treatment and control groups (N = 88: nexperimental = 27; ncontrol = 61) with success in the general chemistry I course as measured by achievement and final course averages and grades. The cybergaming treatment group underwent intensive combination logic-spatial training for 10 weeks. Students' progress was measured using three pre/post instruments: Group Assessment of Logical Thinking (GALT) measured logic ability, Purdue Visualizations of Rotations (ROT) Test measured spatial skills, and the California Chemistry Diagnostic Exam measured content attainment. Finally, students' responses about their participation in this experience were evaluated using open- and closed-ended questions on a self-developed survey. Analyses of the data were performed to determine the relationships between cybergaming treatments and control groups in organic chemistry I and general chemistry I courses. In organic chemistry I results showed no statistical or practical significance as to students' success. In general chemistry I results indicated statistical significance and medium practicality for students with an average grade of C and for females over males as to improvement of spatial skills.
Date: May 2011
Creator: Manrique, Carissa Janice
Partner: UNT Libraries

Metallization and Modification of Low-k Dielectric Materials

Description: Aluminum was deposited onto both Teflon AF and Parylene AF surfaces by chemical vapor deposition of trimethylaluminum. This work shows that similar thin film (100 Angstroms) aluminum oxide adlayers form on both polymers at the low temperature dosing conditions used in the studies. Upon anneal to room temperature and above, defluorination of the polymer surfaces increased and resulted in fluorinated aluminum oxide adlayers; the adlayers were thermally stable to the highest temperatures tested (600 K). Angle-resolved spectra showed higher levels of fluorination toward the polymer/adlayer interface region. Copper films were also deposited at low temperature onto Teflon AF using a copper hexafluoroacetylacetonate-cyclooctadiene precursor. Annealing up to 600 K resulted in the loss of precursor ligands and a shift to metallic copper. As with aluminum adlayers, some polymer defluorination and resulting metal (copper) fluoride was detected. Parylene AF and polystyrene films surfaces were modified by directly dosing with water vapor passed across a hot tungsten filament. Oxygen incorporation into polystyrene occurred exclusively at aromatic carbon sites, whereas oxygen incorporation into parylene occurred in both aromatic and aliphatic sites. Oxygen x-ray photoelectron spectra of the modified polymers were comparable, indicating that similar reactions occurred. The surface oxygenation of parylene allowed enhanced reactivity toward aluminum chemical vapor deposition. Silicon-carbon (Si-Cx) films were formed by electron beam bombardment of trimethylvinylsilane films which were adsorbed onto metal substrates at low temperatures in ultra-high vacuum. Oxygen was also added to the films by coadsorbing water before electron beam bombardment; the films were stable to more than 700 K, with increasing silicon-oxygen bond formation at elevated temperatures. Copper metal was sputter deposited in small increments onto non-oxygenated films. X-ray photoelectric spectra show three-dimensional copper growth (rather than layer-by-layer growth), indicating only weak interaction between the copper and underlying films. Annealing at elevated temperatures caused coalescence or growth ...
Date: December 2008
Creator: Martini, David M.
Partner: UNT Libraries

Experimental and Theoretical Studies of Polycarbocyclic Compounds

Description: Part I. Diels-Alder cycloadditions of 1,2,3,4,9,9-hexachloro-1α,4α,4aα,8aβ-tetrahydro-l,4-methanonaphthalene (32) and 1,2,3,4,9,9-hexachloro-lα,4α,6,7- tetrahydro-l,4-methanonaphthalene (33) to 4-methyl- and 4-phenyl-l,2,4-triazoline-3,5-dione [MTAD and PTAD, respectively] and to N-methylmaleimide (NMM) have been studied. The structures of several of the resulting cycloadducts were determined by X-ray crystallographic methods. The observed stereoselectivity of each of these Diels-Alder reactions was further investigated via application of theoretical methods. Thus, semiempirical (AMI) and ab initio molecular orbital calculations were used to calculate relative energies. Ab initio calculations were employed to perform frontier molecular orbital analyses of diene-dienophile interactions.
Date: May 1998
Creator: Shukla, Rajesh, 1964-
Partner: UNT Libraries

Layered Double Hydroxides and the Origins of Life on Earth

Description: A brief introduction to the current state of research in the Origins of Life field is given in Part I of this work. Part II covers original research performed by the author and co-workers. Layered Double Hydroxide (LDH) systems are anion-exchanging clays that have the general formula M(II)xM(III)(OH)(2x+2)Y, where M(II) and M(III) are any divalent and trivalent metals, respectively. Y can be nearly any anion, although modern naturally occuring LDH systems incorporate carbonate (CO32-), chloride (Cl-), or sulfate (SO42-) anions. Intercalated cobalticyanide anion shows a small yet observable deviation from local Oh symmetry causing small differences between its oriented and non-oriented infrared spectra. Nitroprusside is shown to intercalate into 2:1 Mg:Al LDH with decomposition to form intercalated ferrocyanide and nitrosyl groups of an unidentified nature. The [Ru(CN)6]4- anion is shown to intercalate into layered double hydroxides in the same manner as other hexacyano anions, such as ferrocyanide and cobalticyanide, with its three-fold rotational axis perpendicular to the hydroxide sheets. The square-planar tetracyano-nickelate(II), -palladate(II), and platinate(II) anions were intercalated into both 2:1 and 3:1 Mg:Al layered double hydroxides (LDH). The basal spacings in the 2:1 hosts are approximately 11 Å, indicating that the anions are inclined approximately 75 degrees relative to the hydroxide layers, while in the 3:1 hosts the square-planar anions have enough space to lie more nearly parallel to the LDH cation layers, giving basal spacings of approximately 8 Å. It has been found that the LDH Mg2Al(OH)6Cl catalyzes the self-addition of cyanide, to give in a one-pot reaction at low concentrations an increased yield of diaminomaleonitrile and in addition, at higher ($0.1M) concentrations, a purple-pink material that adheres to the LDH. We are investigating whether this reaction also occurs with hydrotalcite itself, what is the minimum effective concentration of cyanide, and what can be learned about the products ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2001
Creator: Brister, Brian
Partner: UNT Libraries