25 Matching Results

Search Results

Reactor outage schedule (tentative)

Description: This single page document is the December 15, 1970 reactor refueling outage schedule for the Hanford Production Reactor. It also contains data on the amounts and types of fuels to be loaded and relocated in the Production Reactor.
Date: December 15, 1970
Creator: Rowe, R.P.
Partner: UNT Libraries Government Documents Department


Description: The urine and feces specimens from the Apollo 11 mission were analyzed for their radionuclide content. Estimates of cosmic radiation dose received by the astronauts were difficult to determine due to decay of the short-lived radionuclides during quarantine. The concentrations of {sup 7}Be, {sup 22}Na, {sup 40}K, {sup 59}Fe, {sup 60}Co, and {sup 137}Cs were determined. No {sup 147}Pm was observed in any of the samples. The concentrations of 16 major, minor, and trace elements were determined in fecal samples from Apollos 8 and 10. Large discrepancies between the excretion rates and normal dietary intakes were noted for cobalt, iron, tin , and potassium. An interpretation of the hazards these deviations may produce requires the determination of the elemental concentrations of the foodstuffs used during these missions. The fecal samples from the Apollo 11 mission were analyzed for glass fiber content. One anomalous sample was observed having a glass fiber content twofold greater than any previously measured specimen. A piece of the outer thermal coating of the Apollo 12 spacecraft was analyzed for cosmic-ray-induced radioactivity. Beryllium-7 was observed .
Date: January 15, 1970
Creator: Brodzinski, R. L.; Rancitelli, L. A. & Haller, W. A.
Partner: UNT Libraries Government Documents Department

A proposal to study particle production spectra and multiplicities in high energy hadron-hadron collisions, and for a beam survey and quark search

Description: We propose an experimental study at the new 500 GeV accelerator of the differential cross-section for particle production in hadron-hadron collisions. The projectile, and the observed single particle, will range over all combinations of positive and negative {pi}, K and p, with momenta extending up to the highest available. Enough of the secondary particle momentum range will be covered to permit us to determine by integration the multiplicity of the produced particle. Single particles will be detected in a simple spectrometer consisting of wire chambers and a small bending magnet. The configuration of the spectrometer components will be variable so that the overall spectrometer length can be kept proportional to the secondary momentum. The momentum resolution {male}P/P = {+-}0.8% and the invariant phase space acceptance P{sup 2}d{Omega}dP/E = 1.3x10{sup -3} (GeV/c){sup 2} will then be the same at all momenta. Particle identification will be by means of threshold Cherenkov counters, with 10{sup 4}: 1 rejection up to at least 250 GeV/c. Our experimental arrangement is thought to be simple and yet powerful, and we propose its use initially with incident protons and a nuclear target for a beam survey and quark search. Subsequent measurements will be carried out with a hydrogen target in a high intensity secondary beam.
Date: June 15, 1970
Creator: Beier, E.W.; Kreinick, D.L.; Weisberg, H. & U., /Pennsylvania
Partner: UNT Libraries Government Documents Department