5 Matching Results

Search Results

Advanced search parameters have been applied.

OH-initiated heterogeneous aging of highly oxidized organic aerosol

Description: The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.
Date: December 5, 2011
Creator: Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.; Smith, Jared D.; Leone, Stephen R.; Kolb, Charles E. et al.
Partner: UNT Libraries Government Documents Department

SFE Fractionation and RP-HPLC Characterization of Aquatic Fulvic Acid

Description: The Supercritical Fluid Extraction (SFE) technique was used to fractionate Suwannee River reference fulvic acid (FA). The fractions were characterized by gas chromatography (GC) and reversed-phase high performance liquid chromatography (RP-HPLC). A SFE fractionation method was developed using stepwise gradient of supercritical CO₂ and methanol. Three FA fractions were separated. The average mass recovery was 102% with the coefficient of variation of 2.8%. The fractionation dynamics and the difference in the ratios of UV absorption to fluorescence emission indicate the real fractionation of the FA. The HPLC chromatographic peak patterns and the spectra of the corresponding peaks were almost indistinguishable. The overall results of this research support the argument that FA exhibits polymer-like molecular structure.
Date: May 1994
Creator: Shao, Peimin
Partner: UNT Libraries

Chromatographic and Spectroscopic Studies on Aquatic Fulvic Acid

Description: High Performance Liquid Chromatography (HPLC) was used to investigate the utility of this technique for the analytical and preparative separation of components of aquatic fulvic acids (FA). Three modes of HPLC namely adsorption, anion exchange and reversed phase were evaluated. Aquatic fulvic acids were either extracted from surface water and sediment samples collected from the Southwest of the U.S., or were provided in a high purity form from the USGS. On the adsorption mode, a major fraction of aquatic fulvic acid was isolated on a semipreparative scale and subjected to Carbon-13 NMR and FAB Mass Spectroscopy. Results indicated that (1) The analyzed fraction of fulvic acid contains more aliphatic than aromatic moieties; (2) Methoxy, carboxylic acids, and esters are well-defined moieties of the macromolecule; (3) Phenolic components of the macromolecules were not detected in the Carbon-13 NMR spectrum possibly because of the presence of stable free radicals. Results of the anion exchange mode have shown that at least three types of acidic functionalities in aquatic fulvic acid can be separated. Results also indicated that aquatic fulvic acid can be progressively fractionated by using subsequent modes of HPLC. Results of reversed phase mode have shown that (1) The fractionation of aquatic fulvic acid by RP-HPLC is essentially controlled by the polarity and/or pH of the carrier solvent system; (2) Under different RP-HPLC conditions aquatic fulvic acid from several locations are fractionated into the same major components; (3) Fulvic acid extracted from water and sediment from the same site are more similar than those extracted from different sites; (4) Cationic and anionic ion pair reagents indicated the presence of amphoteric compounds within the polymeric structure of fulvic acid. Each mode of HPLC provided a characteristic profile of fulvic acid. The results of this research provided basic information on the behavior of aquatic ...
Date: August 1986
Creator: Chang, David Juan-Yuan
Partner: UNT Libraries

Investigation of Lead Hydrolytic Polymerization and Interactions with Organic Ligands in the Soil/Sediment-Water Environment

Description: The objective of this research was to investigate lead speciation in the soil/sediment-water environment and to better understand how the species affect lead mobility under different environmental conditions. The research involved both field soil and sediment samples as well as standard lead solutions. Field samples were fully characterized and extracted by aqueous and organic solvents. The results were compared and evaluated with the metal speciation model, MINTEQA2. Hydrolytic polymerization and organic complexation studies were conducted with standard lead solutions under controlled experimental conditions. Results of the field samples showed that pH, dissolved cations, ionic strength, dissolved organic matter, and nature of the soil/sediment matrix play major roles in the distribution and mobility of lead (Pb) from contaminated sites. In the aqueous equilibration experiment, the magnitude of Pb2+ solubilization was in the order of pH4>pH7>pH9. The results were in good agreement with MINTEQA2 predictions. An important finding of the research is the detection of Pb polymerization species under controlled experimental conditions. At pH 5.22, Pb polymeric species were formed at rate of 0.03 per day. The role of Pb complexation with organic matter was evaluated in both field and standard samples. Different methodologies showed three types of organically bound Pb. A very small fraction of Pb, in the ppb range, was extractable from the contaminated soil by polar organic solvents. Sequential extractions show that 16.6±1.4 % of the Pb is organically complexed. Complexation of Pb with fulvic acid provided new information on the extent of Pb association with soluble organic matter. The overall results of this research have provided new and useful information regarding Pb speciation in environmental samples. The results, in several instances, have provided verification of MINTEQA2 model's prediction. They also revealed areas of disagreement between the models prediction and the experimental results. A positive note regarding the experimental ...
Date: December 2002
Creator: Sanmanee, Natdhera
Partner: UNT Libraries

The Effect of Organic Ligands on the Sorption of Neodymium, Gadolinium and Uranium onto Nontronite and Goethite

Description: The sorption of the rare earth elements (REE) Nd(III) and Gd(III) onto goethite in the presence of Suwannee River fulvic acid in 0.1 m NaCl solutions at 25 ºC was investigated quantitatively. The experiments involved batch titrations whereby the concentrations of REE and/or fulvic acid remaining in solution were determined as a function of pH. In the absence of fulvic acid, removal of REE from solution is enhanced in the presence of goethite over the pH range from 6 to 8, compared to the unary system (REE only) in which precipitation of an amorphous hydroxide occurred at pH greater than or equal to 8. In the absence of REE, removal of fulvic acid from solution is enhanced in the presence of goethite in the pH range from 2 to 8 at least 9, compared to a unary (fulvic acid only) system. The presence of fulvic acid at concentrations from 10 to 50 ppm enhanced REE sorption onto goethite slightly at pH less than 7, but had no discernable effect at higher pH values. Fulvic acid at a concentration of 100 ppm exhibited a greater enhancement of REE sorption at pH < 7, but inhibited REE sorption slightly at pH > 7. Experiments investigating the effect of sorption of REE onto goethite by citrate were also performed. However, these studies were not completed owing to experimental difficulties. The results obtained in this study represent an important contribution to the ultimate goal of predicting the mobility of trivalent REE (and analogous trivalent actinides) in the presence of natural organic matter and goethite.
Date: June 12, 2007
Creator: Wood, Scott A.
Partner: UNT Libraries Government Documents Department