Search Results

Advanced search parameters have been applied.
open access

The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

Description: In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is bri… more
Date: May 15, 2011
Creator: Zhuo, Ye
Partner: UNT Libraries Government Documents Department
open access

Artificially Structured Boundary for Control and Confinement of Beams and Plasmas

Description: An artificially structured boundary (ASB) produces a short-range, static electromagnetic field that can reflect charged particles. In the work presented, an ASB is considered to consist of a spatially periodic arrangement of electrostatically plugged magnetic cusps. When used to create an enclosed volume, an ASB may confine a non-neutral plasma that is effectively free of applied electromagnetic fields, provided the spatial period of the ASB-applied field is much smaller than any one dimension … more
Date: May 2018
Creator: Hedlof, Ryan
Partner: UNT Libraries
open access

An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

Description: A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range.… more
Date: May 2014
Creator: Pacheco, Josè L.
Partner: UNT Libraries
Back to Top of Screen