452 Matching Results

Search Results

Advanced search parameters have been applied.

The Classification and Grading of Cotton

Description: "The objects of grading and classifying cotton are to aid (1) in determining the comparative values of the different qualities and (2) in describing the cotton so as to make buying and selling easier when there are no samples. With the present methods of buying cotton...the grade practically determines the price that is received by the producer." -- p. 1-2. The bulletin introduces the grades by name, explains the factors that influence the grade, discusses grade standards, and provides cost and pricing information for grades and markets.
Date: 1914
Creator: Earle, D. E. & William S. (William Samuel) Dean, 1883-
Partner: UNT Libraries Government Documents Department

Characterization of cDNA and Genomic Clones for a Palmitoyl-acyl Carrier Protein Thioesterase and an Osmotin-Like PR5 Protein in Gossypium Hirsutum.

Description: Putative cotton cDNA clones and cognate genomic clones for a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE) and an osmotin-like pathogenesis-related 5 (PR5) protein have been isolated and characterized. PATE is a class B fatty acid thioesterase with specificity for saturated long-chain fatty acids such as palmitate, and is implicated as a key enzyme to be targeted for regulation of fatty acid synthesis in order to alter cotton seed oil profiles. A nearly full-length 1.7-kb cDNA clone was isolated using a hybridization probe derived from an Arabidopsis PATE cDNA clone designated TE 3-2. A 17-kb genomic segment encompassing the PATE gene was also isolated, which has six exons and five introns with high sequence identity with other FatB cDNA/gene sequences. The deduced PATE preprotein amino acid sequence of 413 residues has putative signal sequences for targeting to the chloroplast stroma. PR5 proteins called osmotins are made in response to fungal pathogen stress or osmotic stress (water deprivation or salt exposure). Osmotins may actually form pores in fungal membranes, leading to osmotic rupture and destruction of the fungal cells. A cotton osmotin-like PR5 cDNA insert of 1,052 base-pairs was isolated and shown to encode a preprotein of 242 amino acids and is predicted to be secreted to the extracellular matrix as a neutral isoform. The deduced amino acid sequence has 16 cysteine residues that are highly conserved in osmotin-like proteins and are important in stabilizing the three-dimensional structure seen in thaumatin, zeamatin, and PR5-d. The intronless cognate cotton genomic clone has two putative ethylene response elements (GCC boxes) found in other PR5 gene promoter regions, as well as several tentative promoter/enhancer elements possibly involved in spatial/temporal gene expression.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2002
Creator: Yoder, David W.
Partner: UNT Libraries

Cotton from boll to bale.

Description: Describes the steps for harvesting, drying, handling, baling, and storing cotton.
Date: October 1941
Creator: Gerdes, Francis L. (Francis Leo), 1907-; Martin, William J. (William Jules), 1910-; Bennett, Charles A. (Charles Abel), b. 1889. & United States. Dept. of Agriculture.
Partner: UNT Libraries Government Documents Department

Sea Island Cotton

Description: This report discusses the cultivation of Sea Island cotton, which is a variety of cotton that differs from Upland cotton and is commonly grown in Florida, South Carolina, and southern Georgia. It is related to and resembles Egyptian cotton. Topics discussed include fertility, land preparation, seed selection, and diseases of Sea Island cotton.
Date: 1916
Creator: Orton, W. A. (William Allen), 1877-1930
Partner: UNT Libraries Government Documents Department

Analysis of a Cotton Gene Cluster for the Antifungal Protein Osmotin

Description: Three overlapping genomic clones covering 29.0 kilobases of cotton DNA were found to encompass a cluster of two presumptive osmotin genes (OSMI and OSMII) and two osmotin pseudogenes (OSMIII and OSMIV). A segment of 16,007 basepairs of genomic DNA was sequenced from the overlapping genomic clones (GenBank Accessions AY303690 and AF304007). The two cotton osmotin genes were found to have open reading frames of 729 basepairs without any introns, and would encode presumptive osmotin preproteins of 242 amino acids. The open reading frames of the genes are identical in sequence to two corresponding cDNA clones (GenBank Accessions AF192271 and AY301283). The two cDNA inserts are almost full-length, since one lacks codons for the four N-terminal amino acids, and the other cDNA insert lacks the coding region for the 34 N-terminal amino acids. The cotton osmotin preproteins can be identified as PR5 proteins from their similarities to the deduced amino acid sequences of other plant osmotin PR5 preproteins. The preproteins would have N-terminal signal sequences of 24 amino acids, and the mature 24 kilodalton isoforms would likely be targeted for extracellular secretion. Prospective promoter elements, including two ethylene response elements, implicated as being positive regulatory elements in the expression of a number of PR-proteins, occur in the 5'-flanking regions. The mature osmotin proteins accumulate in cotton plants treated with the inducers ethephon and hydrogen peroxide. Thus, the two cotton osmotin genes encode osmotin proteins. The coding regions of the two genes have been expressed and isolated as fusion polypeptides in a bacterial expression system. Binary constructs containing the open reading frames of the two osmotin genes under the control of the 35S CaMV promoter have been generated for eventual production of transgenic Arabidopsis and cotton plants for potential constitutive expression of the osmotin proteins for increased resistance against fungal pathogens.
Date: December 2003
Creator: Wilkinson, Jeffery Roland
Partner: UNT Libraries

Analysis of the Expression Profiles of Two Isoforms of the Antifungal Protein Osmotin from Gossypium hirsutum

Description: The expression of two cotton osmotin genes was evaluated in terms of the mRNA and protein expression patterns in response to chemical inducers such as ethylene, hydrogen peroxide, and sodium chloride. Reverse transcriptase-polymerase chain reactions (RT-PCR) indicated that osmotin mRNAs are expressed constitutively in root tissues of cotton plants, and that they are rapidly induced in leaf and stem tissues upon ethylene treatment. Real time RT-PCR indicated that osmotin transcript levels were induced 2 to 4 h after treatment with ethephon. The osmotin mRNA levels appear to increase 12 h after treatment, decrease, and then increase again. The osmotin protein expression patterns were analyzed in Western blot analyses using an anti-osmotin antibody preparation. A 24-KDa protein band was detected from cotton plants treated with the inducers. The 24-KDa osmotin proteins were induced 4 h after treatment with ethephon, while down-regulated 96 h after treatment. Multiple osmotin isoforms were observed to be induced in cotton plants upon treatment with ethephon by two-dimensional gel electrophoresis. One goal of this dissertation research was to genetically engineer two cotton osmotin genes to routinely overproduce their antifungal proteins in transgenic Arabidopsis and cotton plants as a natural defense against fungal infections, using co-cultivation with Agrobacterium tumefaciens cells harboring pCAMBIA 2301 vector constructs containing the osmotin genes. Many transgenic Arabidopsis and cotton plants were generated. However, genomic blotting analyses indicated the absence of the osmotin transgenes, but the presence of GUS genes from the vector cassette. Alkaline blot analyses of the vector DNAs from transformed Agrobacterium cells confirmed that an anomalous DNA structural rearrangement or aberrant recombination event probably occurred in the Agrobacterium cells, interdicting the integration of osmotin transgenes into the Arabidopsis and cotton plants. This research provides crucial baseline information on expression of cotton osmotin mRNAs and proteins.
Date: May 2007
Creator: Spradling, Kimberly Diane
Partner: UNT Libraries

Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.

Description: N-Acylethanolamines (NAEs) are enriched in seed-derived tissues and are believed to be formed from the membrane phospholipid, N-acylphosphatidylethanolamine (NAPE) via the action of phospholipase D (PLD). In an effort to identify a functional NAPE-PLD in cotton seeds and seedlings, we have screened a cotton seedling cDNA (cotyledon mRNA from 48 h dark grown seedlings) library with a 1.2 kb tobacco partial cDNA fragment encoding the middle third of a putative PLDβ/γ (genbank accession, AF195614) isoform. Six plaques were isolated from the Uni-ZAP lambda library, excised as pBluescript SK(-) phagemids and subjected to nucleotide sequence analysis. Alignment of derived sequences with Arabidopsis PLD family members indicated that the cDNAs represent six different PLD gene products -three putative PLD β isoforms and three putative PLD δ isoforms. The PLD β isoforms, designated Ghpldβ1a, GHpldβ1b and a truncated Ghpldβ1b isoform. Both the full-length PLD β proteins contained characteristic HKxxxxD catalytic domains, a PC-binding domain, a PIP2-binding domain and a C2 domain. In addition both cotton PLD β isoforms had a N-terminal "SPQY" rich domain which appeared to be unique to these PLDs. The three PLD δ isoforms, designated Ghpldδ1a, Ghpldδ1b and Ghpldδ1b-2 encode full-length PLDδ proteins, and like the above PLDs, contained the characteristic catalytic and regulatory domains. The expression of Ghpldδ1b showed hydrolytic and transphosphatidylation activity toward radiolabelled phosphatidylcholine (PC) but it appears Ghpldδ1b does not utilize NAPE as a substrate to produce NAEs nor does it seem to be suppressed by NAEs.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2005
Creator: McHugh, John
Partner: UNT Libraries

A New System of Cotton Culture and Its Application

Description: "The way to secure an early short-season crop of cotton is to thin the plants later and leave them closer together in the rows than is now customary. Neither of these policies is advisable if used alone, but they give a real advantage when properly combined. Keeping the plants closer together during the early stages of growth restricts the formation of vegetative branches and induces an earlier development of fruiting branches. The new system is based on the principle of controlling the formation of the branches." -- title page
Date: 1914
Creator: Cook, O. F. (Orator Fuller), 1867-1949
Partner: UNT Libraries Government Documents Department

Drying seed cotton.

Description: Describes various methods of cotton-drying and the effectiveness of each.
Date: January 1949
Creator: Gerdes, Francis L. (Francis Leo), 1907-; Bennett, Charles A. (Charles Abel), b. 1889. & Martin, William J. (William Jules), 1910-
Partner: UNT Libraries Government Documents Department

An Investigation into the Characteristics and Causes of Monthly and Yearly Price Fluctuations of Spot Cotton at New York, New York, During the Period, 1911-1953

Description: This study endeavors to give an insight into the causes and characteristics of price fluctuations of spot cotton at New York, N.Y., for the period 1911-1953, and to indicate whenever possible the factors which caused the price of cotton to rise or fall during selected periods.
Date: February 1954
Creator: Reynolds, Harry M.
Partner: UNT Libraries

Cotton ginning.

Description: Describes the the mechanical process of cotton ginning, using a saw gin.
Date: October 1925
Creator: Meloy, G. S. (Guy Stanley), 1874-
Partner: UNT Libraries Government Documents Department

Cotton Ginning Information for Farmers

Description: This report gives an account of the cotton gin as a machine and pays special attention to its various parts and how they operate together. Bale preparation is also discussed.
Date: 1916
Creator: Taylor, Fred; Griffith, D. C. & Atkinson, C. E.
Partner: UNT Libraries Government Documents Department

The African Cotton Initiative and WTO Agriculture Negotiations

Description: This report discusses the African cotton initiative, over which disagreement has blocked progress on an agreement on agriculture in the current round of multilateral trade negotiations known as the Doha Development Agenda (DDA). In World Trade Organization (WTO) Negotiations on agriculture, a group of African countries have proposed that all subsidies for cotton be eliminated by the end of four years. The proposal also advocates compensating African cotton producing countries for revenues estimated to be lost due to cotton subsidies.
Date: January 16, 2004
Creator: Hanrahan, Charles E.
Partner: UNT Libraries Government Documents Department

Molecular cloning and analysis of the genes for cotton palmitoyl-acyl carrier protein thioesterase (PATE) and Δ-12 fatty acid desaturase (FAD2-3) and construction of sense and anti-sense PATE plasmid vectors for altering oilseed composition of transgenic cotton plants.

Description: A cotton PATE cDNA clone has a 1.7-kb insert with an coding region for 410 amino acids, lacking codons for the three N-terminal amino acids. The predicted amino acid sequence of the PATE preprotein has a characteristic stromal-targeting domain and a 63% identity to the Arabidopsis FatB1 thioesterase sequence. A cotton genomic clone containing a 17.4-kb DNA segment was found to encompass a palmitoyl-ACP thioesterase (FatB1) gene. The gene spans 3.6 kb with six exons and five introns. The six exons are identical in nucleotide sequence to the open reading frame of the corresponding cDNA, and would encode a preprotein of 413 amino acids. The preprotein is identified as a FatB thioesterase from its deduced amino acid sequence similarity to those of other FatB thioesterase preproteins. A 5'-flanking region of 914 bp was sequenced, with the potential promoter/enhancer elements including basic helix-loop-helix elements (E box). Alkaline blot hybridization of cotton genomic DNA suggests the presence at least two FatB1 thioesterase genes in cotton. Four plasmid constructs for both constitutive and seed-specific anti-sense RNA suppression and gene-transgene co- suppression of PATE gene expression were successfully generated. Two overlapping cotton genomic clones were found to encompass a Δ-12 fatty acid desaturase (FAD2-3) gene. The continuous FAD2-3 coding region is 1,155 bp and would encode a protein of 384 amino acids. The FAD2-3 gene has one large intron of 2,967 bp entirely within its 5'-untranslated region. Several potential promoter/enhancer elements, including several light responsive motifs occur in the 5'-flanking region. Yeast cells transformed with a plasmid construct containing the cotton FAD2-3 coding region accumulate an appreciable amount of linoleic acid (18:2), not normally present in wild-type yeast cells, indicating that the gene encodes a functional FAD2 enzyme.
Date: May 2002
Creator: Nampaisansuk, Mongkol
Partner: UNT Libraries