4,613 Matching Results

Search Results

Advanced search parameters have been applied.

Identification of the Neurobiological Basis of Hemodynamic Responses Correlated with Cognitive Stroop Task Performance After an Acute Bout of Aerobic Exercise

Description: Cardiovascular activities may increase the brain blood flow improving neuronal activities leading to improved cognition. Consequently, the effects of an acute bout of moderate intensity aerobic exercise on brain hemodynamics and its correlation with cognitive color-word Stroop task performance were tested. The Stroop tasks were congruent (color matches word) and incongruent (color does not match word). Prefrontal (PFC) and motor cortex (MC) blood flow was recorded by fNIRS (functional near-infrared spectroscopy) while the subject was performing the Stroop tasks before and after the 30 minutes of exercise or equivalent time of rest controls (checking for practice effects). Ninety human subjects of age 24± 6, 20 ADHD (attention-deficit hyper-activity disorder), 27 High-BMI (>25), 29 males were recruited. Reaction time ‘RT' decreased (p<0.05) after exercise for both the congruent (12%) and incongruent (10%) Stroop tasks, compared to 8% with practice alone. Accuracy did not change after practice or exercise. HR changes after exercise correlated (p<0.05) with better accuracy and faster RT for the incongruent Stroop task. In general, a metabolic lag occurred in the neuronal deoxy- hemoglobin (Hb) signals behind the systemic oxy-Hb signals. PFC showed the highest effect sizes of Stroop task-responsive systemic hemodynamic changes compared to baseline irrespective of rest or exercise. Yet, PFC showed most significant (p<0.001) neuronal hemodynamic changes between the before and after exercise sessions, and these changes were opposite for right and left PFC, and opposite for congruent and incongruent Stroop tasks. Correlating the RT and mistakes with hemodynamics for both the Stroop tasks revealed that, after exercise, neuronal hemodynamic changes occurred at both PFC and MC associated with faster RT (p<0.05), and systemic hemodynamic responses occurred at PFC correlated (p<0.05) with mistakes. Overall, it was concluded that exercise changed the neuronal hemodynamic changes affecting speed; however, neuronal metabolic changes did not occur sufficiently to help ...
Date: May 2018
Creator: Pal, Amrita
Partner: UNT Libraries

DOE EPSCoR Initiative in Structural and computational Biology/Bioinformatics

Description: The overall goal of the DOE EPSCoR Initiative in Structural and Computational Biology was to enhance the competiveness of Vermont research in these scientific areas. To develop self-sustaining infrastructure, we increased the critical mass of faculty, developed shared resources that made junior researchers more competitive for federal research grants, implemented programs to train graduate and undergraduate students who participated in these research areas and provided seed money for research projects. During the time period funded by this DOE initiative: (1) four new faculty were recruited to the University of Vermont using DOE resources, three in Computational Biology and one in Structural Biology; (2) technical support was provided for the Computational and Structural Biology facilities; (3) twenty-two graduate students were directly funded by fellowships; (4) fifteen undergraduate students were supported during the summer; and (5) twenty-eight pilot projects were supported. Taken together these dollars resulted in a plethora of published papers, many in high profile journals in the fields and directly impacted competitive extramural funding based on structural or computational biology resulting in 49 million dollars awarded in grants (Appendix I), a 600% return on investment by DOE, the State and University.
Date: February 21, 2008
Creator: Wallace, Susan S.
Partner: UNT Libraries Government Documents Department