2 Matching Results

Search Results

Advanced search parameters have been applied.

Cathodic protection of carbon steel in simulated geothermal environments

Description: The applicability of cathodic protection to mitigate corrosion of carbon steel in two different environments containing H{sub 2}S has been investigated using impressed current and sacrificial anode techniques. Results of impressed current tests conducted under potential control shows that the weight loss can be reduced significantly by shifting the potential of the metal 60 to 80 mV cathodic to the open circuit potential. The relationship between the applied current and the potential shift shows that the current requirement does not necessarily increase with the voltage shift, thus implying that the cost of cathodic protection may not increase in proportion to the protection achieved. The feasibility of using zinc as a sacrificial anode in the environment of interest has also been studied.
Date: October 8, 1982
Creator: Bandy, R. & van Rooyen, D.
Partner: UNT Libraries Government Documents Department

Sulphursoil - Delano Development Corporation

Description: A sizable amount of technical information has been accumulated on the effects of agricultural applications of the natural mineral product called Sul-Fe. This technical information supports the field observations of farmers, landscapers and gardeners who have used the product. Sul-Fe is often evaluated in terms of its sulphur content alone. When compared to elemental sulphur (100% sulphur), the 18 to 21% sulphur content of Sul-Fe seems relatively low. However, as the following technical data indicates, when judged on actual effects, Sul-Fe's complex mixture of minerals has several advantages over elemental sulphur. When judged on the basis of soil acidulation, Sul-Fe has more immediate effects than elemental sulphur. The rapid acidifying effect is due to Sul-Fe's content of crystalline sulphuric acid. Sul-Fe also has long-term effects on soil pH due to its content of sulphur and sulfides and the time required to oxidize these materials. Elemental sulphur contains sulphur in only one chemical form which must be microbially oxidized before it becomes reactive in the soil solution, a reaction that takes quite some time in some soils. Sul-Fe is thus better than elemental sulphur in terms of immediate effects and comparable in terms of long term effects. Applied blends of Sul-Fe supplemented with elemental sulphur may provide for a maximization of both short and long term effects. An additional benefit derived from the use of Sul-Fe is the addition to the soil of a variety of trace nutrients including iron, calcium, zinc, copper, manganese, magnesium, and molybdenum.
Date: June 1, 1985
Partner: UNT Libraries Government Documents Department