16 Matching Results

Search Results

Advanced search parameters have been applied.

Comments: Energy Resources Conservation and Development Commisssion (ERCDC) Draft Staff Report - Geothermal

Description: My major impression of the Staff Draft ''Geothermal Policy Option Paper...'' is that notwithstanding repeated statements that geothermal development is to be encouraged by streamlining the regulatory siting process, the ERCDC is trying to confer on itself jurisdiction over the exploratory development of the resource; thus, expanding regulatory involvement. The Staff is proposing alternative methods of asserting control over the county's conditional use--EIR process. The Warren-Alquist Act simply does not grant siting jurisdiction to the Energy Commission for exploratory steam well drilling. For the Staff to say that the Commission simply chooses not to take jurisdiction is to ignore the statutory scheme regulating geothermal development and serves to reinforce a posture justifying extensive control over the county's land use prerogative.
Date: February 7, 1978
Creator: Moss, Richard H.
Partner: UNT Libraries Government Documents Department

Environmental Report Utah State Prison Geothermal Project

Description: This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.
Date: March 1, 1980
Partner: UNT Libraries Government Documents Department

Final report on the design and development of a Rolling Float Meter for drilling-fluid outflow measurement

Description: Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Meter design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.
Date: March 1, 1998
Creator: Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wright, E.K. & Glowka, D.A.
Partner: UNT Libraries Government Documents Department

Drill pipe protector development

Description: The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.
Date: March 1, 1996
Creator: Thomerson, C.; Kenne, R. & Wemple, R.P.
Partner: UNT Libraries Government Documents Department

A Case Study of Wide Diameter Casing for Geothermal Systems

Description: Three wells have been drilled in the central resistivity area of a geothermal field in the Taupo Volcanic Zone, New Zealand. Using a well bore simulator, WELL SIM V3.0, reservoir conditions and well characteristics are evaluated to determine the increase in output by increasing production casing diameters from either 8-5/8 inches OD or 9-5/8 inches OD to 13-3/8 inches OD. Increases in well drilling costs are determined to provide a commentary on the economics. While open hole size is effectively doubled, well costs increase by 10% and, in this study, output increases by an average of 18%.
Date: January 1, 1995
Creator: King, T. R.; Freeston, D. H. & Winmill, R. L.
Partner: UNT Libraries Government Documents Department

Mechanisms of Formation Damage in Matrix Permeability Geothermal Wells

Description: Matrix permeability geothermal formations are subject to damage during well drilling and completion. Near well bore permeability impairment that may occur as a result of particulate invasion, and chemical interaction between formation clays, drilling mud filtrates and fohation brines is investigated. Testing of various filtration chemistries on the permeability of East Mesa sandstone indicates that permeability is significantly impaired by the flow of low salinity formation brines. This damage is attributed to cation exchange and removal processes which alter the stability of clay structures. Fluid shearing dislodges particles, which clog pore throats, irreversibly reducing permeability. The test program investigating the effects of mud-transported particles on geothermal formations is still in progress. The rationale, apparatus and test procedures are described. Final results of this testing will be presented at the conference.
Date: January 1, 1981
Creator: Bergosh, J. L.; Wiggins, R. B.; Enniss, D. O. & Jones, A. H.
Partner: UNT Libraries Government Documents Department

Downhole Temperature Prediction for Drilling Geothermal Wells

Description: Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.
Date: January 1, 1981
Creator: Mitchell, R. F.
Partner: UNT Libraries Government Documents Department

Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico

Description: Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State.
Date: January 2, 2002
Creator: Witcher, James C.
Partner: UNT Libraries Government Documents Department

Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

Description: The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.
Date: September 1, 1981
Partner: UNT Libraries Government Documents Department

The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington

Description: During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.
Date: November 1, 1983
Creator: Korosec, Michael A.
Partner: UNT Libraries Government Documents Department

Geothermal Evaluation of The Hosston Formation Lackland Air Force Base, San Antonio, Texas Phase II Report

Description: This report summarizes the results of a phased program to test the geothermal characteristics of the Hosston Formation at Lackland Air Force Base, San Antonio, Texas. The geothermal resource evaluation was made possible through drilling and preliminary testing of a large diameter well, Lackland AFB No.1, at the south portion of the base. Phase I of the program had 3 major components: (1) compilation and interpretation of surface and subsurface geologic data to site the well; (2) design of the well; and (3) permitting the well. Phase II consisted of well drilling and preliminary development. The goal of the program was to identify water temperature, water quality, and productivity characteristics of the Hosston aquifer, which preliminary studies suggested might be favorable for direct applications on the base. Results reported herein suggest that heat pumps or other engineering alternatives might be needed for such applications. Results of the well drilling give data on water productivity, quality and temperature. Air-lift testing shows that, although the well does not flow to surface, good artesian pressure exists. Water quality appears acceptable, with about 2200 parts per million total dissolved solids. Equilibrated reservoir temperatures appear to be slightly less than 108 F (42 C).
Date: May 30, 1984
Creator: Zeisloft, Jon & Foley, Duncan
Partner: UNT Libraries Government Documents Department

The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

Description: This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.
Date: July 1, 1982
Partner: UNT Libraries Government Documents Department

Materials for Geothermal Production

Description: Advances in the development of new materials continue to be made in the Geothermal Materials Project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved. Laboratory testing of BNL-developed phosphate modified calcium aluminate cements confirmed their hydrolytic stability in 300 C brine and their resistance to chemical attack by CO{sub 2}. Specimens were found to be >20 times more resistant to carbonation than Class H cement and twice as resistant as unmodified calcium aluminate cements. Testing of thermally conductive polymer cements as potential corrosion resistant liner materials for use in heat exchanger applications was continued. Field test were conducted in flowing hypersaline brine and the results indicated scale deposition rates lower than those on a high alloy steel. Additional tests for bottoming cycle heat exchange use are planned for FY 1992. Progress was also made with chemical systems for lost circulation control. If materials placement is to be performed by pumping through an open drillpipe or through a drillable straddle packer, a bentonite-ammonium polyphosphate-borax-magnesium oxide formulation, containing fibers or particulates when large fissures are encountered, can be used. This system was ready for demonstration in FY 1991, but a suitable test site did not become available. Optimization of this and three other formulations for use with other Sandia National Laboratories developed placement technology is being continued. Work to develop high temperature hydrolytically stable chemical coupling ...
Date: March 24, 1992
Creator: Kukacka, Lawrence E.
Partner: UNT Libraries Government Documents Department

Geothermal Direct Use Engineering and Design Guidebook Available for an Expanding Market

Description: The Geothermal direct use industry potential, growth trends, needs, and how they are being met, are addressed. The high potential for industry growth, coupled with a rapidly expanding use of geothermal energy for direct use, and concerns over the greenhouse effect is the setting in which a new engineering and design guidebook is being issued to support the growth of the geothermal direct use industry. Recent investigations about the current status of the industry and the identification of technical needs of current operating district heating systems provide the basis upon which this paper and the guidebook is presented. The guidebook, prepared under the auspices of the U.S. Department of Energy, attempts to impart a comprehensive understanding of information important to the development of geothermal direct use projects. The text is aimed toward the engineer or technical person responsible for project design and development. The practical and technical nature of the guidebook answers questions most commonly asked in a wide range of topics including geology, exploration, well drilling, reservoir engineering, mechanical engineering, cost analysis, regulations, and environmental aspects.
Date: March 21, 1989
Creator: Lunis, Ben C. & Lienau, Paul J.
Partner: UNT Libraries Government Documents Department

The economics of heat mining: An analysis of design options and performance requirements of hot dry rock (HDR) geothermal power systems

Description: A generalized economic model was developed to predict the breakeven price of HDR generated electricity. Important parameters include: (1) resource quality--average geothermal gradient ({sup o}C/km) and well depth, (2) reservoir performance--effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components--drilling, reservoir formation, and power plant costs and (4) economic factors--discount and interest rates, taxes, etc. Detailed cost correlations based on historical data and results of other studies are presented for drilling, stimulation, and power plant costs. Results of the generalized model are compared to the results of several published economic assessments. Critical parameters affecting economic viability are drilling costs and reservoir performance. For example, high gradient areas are attractive because shallower well depths and/or lower reservoir production rates are permissible. Under a reasonable set of assumptions regarding reservoir impedance, accessible rock volumes and surface areas, and mass flow rates (to limit thermal drawdown rates to about 10 C per year), predictions for HDR-produced electricity result in competitive breakeven prices in the range of 5 to 9 cents/kWh for resources having average gradients above 50 C/km. Lower gradient areas require improved reservoir performance and/or lower well drilling costs.
Date: January 25, 1991
Creator: Tester, Jefferson W. & Herzog, Howard J.
Partner: UNT Libraries Government Documents Department

FINAL REPORT ENHANCED GEOTHERMAL SYSTEMS TECHNOLOGY PHASE II ANIMAS VALLEY, NEW MEXICO

Description: Final Technical Report covering siting, permitting, and drilling two geothermal temperature gradient holes. This report provides a summary of geotechnical and geophysical data that led to the siting, drilling, and completion of 2 temperature gradient holes in the geothermal anomaly at Lightning Dock Known Geothermal Resource Area in the Animas Valley of New Mexico. Included in this report is a summary of institutional factors and data defining the well drilling process and acquiring drilling permits. Data covering the results of the drilling and temperature logging of these two holes are provided. The two gradient holes were sited on federal geothermal leases owned by Lightning Dock Geothermal, Inc. and both holes were drilled into lakebed sediments some distance from the intense shallow geothermal anomaly located in the eastern half of Section 7, Township 25 South, Range 19 West.
Date: December 29, 2003
Creator: A.Cunniff, Roy & Bowers, Roger L.
Partner: UNT Libraries Government Documents Department