6 Matching Results

Search Results

Advanced search parameters have been applied.

Mixed oxide conversion facility alternative conceptual designs. [Coprecipitation-direct calcination (COPRECAL)]

Description: Allied-General Nuclear Services recently performed studies to evaluate alternative proliferation-resistant flowsheets of the uranium-based LWR fuel cycle. The alternatives evaluated consist of coprocessing schemes with either a gamma or a heat spike added. A literature search and evaluation were performed to select a process technology for mixed oxide coconversion. The COPRECAL process was chosen as the most suitable conversion process technology. Three alternative mixed oxide conversion facility design concepts were prepared based on the COPRECAL technology. These alternative concepts are compared to a pure plutonium conversion facility. Facility designs, relative proliferation resistance, and cost estimates are discussed.
Date: March 1, 1980
Creator: Thomas, L.L.
Partner: UNT Libraries Government Documents Department

Quality assurance in the manufacture of BeO--UO/sub 2/ nuclear fuel elements

Description: 92,000 BeO--UO/sub 2/ fuel elements were fabricated for the upgrading of the Sandia Annular Core Pulse Reactor. The toxicity of BeO and the radioactivity of /sup 235/U necessitated special handling procedures and equipment. This document describes the materials, specifications, and fabrication process. (DLC)
Date: September 12, 1978
Creator: Holt, J.B. & Ankeny, D.C.
Partner: UNT Libraries Government Documents Department

Nuclear fuel fabrication and refabrication cost estimation methodology

Description: The costs for construction and operation of nuclear fuel fabrication facilities for several reactor types and fuels were estimated, and the unit costs (prices) of the fuels were determined from these estimates. The techniques used in estimating the costs of building and operating these nuclear fuel fabrication facilities are described in this report. Basically, the estimation techniques involve detailed comparisons of alternative and reference fuel fabrication plants. Increases or decreases in requirements for fabricating the alternative fuels are identified and assessed for their impact on the capital and operating costs. The impact on costs due to facility size or capacity was also assessed, and scaling factors for the various captial and operating cost categories are presented. The method and rationale by which these scaling factors were obtained are also discussed. By use of the techniques described herein, consistent cost information for a wide variety of fuel types can be obtained in a relatively short period of time. In this study, estimates for 52 fuel fabrication plants were obtained in approximately two months. These cost estimates were extensively reviewed by experts in the fabrication of the various fuels, and, in the opinion of the reviewers, the estimates were very consistent and sufficiently accurate for use in overall cycle assessments.
Date: November 1, 1979
Creator: Judkins, R.R. & Olsen, A.R.
Partner: UNT Libraries Government Documents Department

Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels

Description: The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O/sub 2/ fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required.
Date: December 1, 1979
Creator: Olsen, A.R. & Judkins, R.R. (comps.)
Partner: UNT Libraries Government Documents Department

Irradiation performance of HTGR fuel in HFIR capsule HT-31

Description: The capsule was irradiated in the High Flux Isotope Reactor at ORNL to peak particle temperatures up to 1600/sup 0/C, fast neutron fluences (0.18 MeV) up to 9 x 10/sup 25/ n/m/sup 2/, and burnups up to 8.9% FIMA for ThO/sub 2/ particles. The oxygen release from plutonium fissions was less than calculated, possibly because of the solid solution of SrO and rare earth oxides in UO/sub 2/. Tentative results show that pyrocarbon permeability decreases with increasing fast neutron fluence. Fission products in sol-gel UO/sub 2/ particles containing natural uranium mostly behaved similarly to those in particles containing highly enriched uranium (HEU). Thus, much of the data base collected on HEU fuel can be applied to low-enriched fuel. Fission product palladium penetrated into the SiC on Triso-coated particles. Also the SiC coating provided some retention of /sup 110m/Ag. Irradiation above about 1200/sup 0/C without an outer pyrocarbon coating degraded the SiC coating on Triso-coated particles.
Date: May 1, 1979
Creator: Tiegs, T.N.; Robbins, J.M.; Hamner, R.L.; Montgomery, B.H.; Kania, M.J.; Lindemer, T.B. et al.
Partner: UNT Libraries Government Documents Department