13 Matching Results

Search Results

Advanced search parameters have been applied.

Indirect liquefaction of coal. [Coal gasification plus Fischer-Tropsch, methanol or Mobil M-gasoline process]

Description: The most important potential environmental problems uniquely associated with indirect liquefaction appear to be related to the protection of occupational personnel from the toxic and carcinogenic properties of process and waste stream constituents, the potential public health risks from process products, by-products and emissions and the management of potentially hazardous solid wastes. The seriousness of these potential problems is related partially to the severity of potential effects (i.e., human mortality and morbidity), but even more to the uncertainty regarding: (1) the probable chemical characteristics and quantities of process and waste streams; and (2) the effectiveness and efficiencies of control technologies not yet tested on a commercial scale. Based upon current information, it is highly improbable that these potential problems will actually be manifested or pose serious constraints to the development of indirect liquefaction technologies, although their potential severity warrants continued research and evaluation. The siting of indirect liquefaction facilities may be significantly affected by existing federal, state and local regulatory requirements. The possibility of future changes in environmental regulations also represents an area of uncertainty that may develop into constraints for the deployment of indirect liquefaction processes. Out of 20 environmental issues identified as likely candidates for future regulatory action, 13 were reported to have the potential to impact significantly the commercialization of coal synfuel technologies. These issues are listed.
Date: June 30, 1980
Partner: UNT Libraries Government Documents Department

Breckinridge Project, initial effort. Report VII, Volume III. Cultural resource assessment socioeconomic background data

Description: This report has been prepared in conjunction with an environmental baseline study for a commercial coal conversion facility being conducted by Ashland Synthetic Fuels, Inc. (ASFI) and Airco Energy Company (AECO). This report represents a cultural resource assessment for the proposed plant site and two potential solid waste disposal areas. This assessment presents data collected by Dames and Moore during a recent archaeological reconnaissance of the unsurveyed southeastern portion of the proposed plant site and two potential solid waste disposal areas. Also, results of two previous surveys on the northern and southwestern portion of the plant site for American Smelting and Refining Company (ASARCO) and Kentucky Utilities are included. The Dames and Moore survey of the southeastern portion of the plant site identified one archaeological site, three standing structures and one historic cemetery. In addition 47 archaeological sites and six standing structures are known from two previous surveys of the remainder of the plant site (Cowan 1975 and Turnbow et al 1980). Eleven of the previously recorded archaeological sites were recommended for further assessment to evaluate their potential for inclusion within the Holt Bottoms Archaeological District currently listed on the National Register of Historic Places. None of the archaeological sites or standing structures located within the plant site during the Dames and Moore survey were recommended for further assessment. A total of eight archaeological sites were located during the Dames and Moore survey of the two potential solid waste disposal areas. Of this total only two sites were recommended for further assessment. Also, one previously unknown historic cemetry was located in the southernmost potential waste disposal area.
Date: unknown
Partner: UNT Libraries Government Documents Department

Breckinridge Project, initial effort

Description: Report IV, Volume 5, provides descriptions, data, and drawings pertaining to Cryogenic Hydrogen Purification (Plant 8), Sour Water Treating (Plant 9), and the Sulfur Plant (Plant 10). Cryogenic Hydrogen Purification (Plant 8) purifies the purge gas stream from the Gas Plant (Plant 7, described in Report IV, Volume 4) to a 93% purity hydrogen product. Sour Water Treating (Plant 9) removes free ammonia and acid gases from sour water and separates them to recover a high quality anhydrous ammonia product. The Sulfur Plant (Plant 10) recovers, as a saleable liquid product, approximately 95% of the sulfur in feed streams from the Gas Plant (Plant 7, described in Report IV, Volume 4), Sour Water Treating (Plant 9), Gasification and Purification (Plant 12, described in Report IV, Volume 6), and Stack Gas Scrubbing (Plant 35, described in Report V, Volume 3). The following information is included for each of the three plants described in this volume: a description of the plant's process design, including the utility balance, catalysts and chemicals usage, and a process flow diagram; an equipment list, including item numbers and descriptions; data sheets and sketches for major plant components; and pertinent engineering drawings. An appendix contains: an overall site plan showing the locations of all plants; and the symbols and legend for the piping and instrument diagrams included in this volume.
Date: unknown
Partner: UNT Libraries Government Documents Department

Synfuel modified diesel. Third quarterly progress report, October 1, 1981-December 31, 1981

Description: Yanmar's effort was directed toward: (1) heat release analysis of SRC-II fuel in a prechamber diesel, and (2) improving the particulate trap to obtain reliable and consistent particulate concentration from a prechamber engine burning SRC-II blend fuel. Yanmar also disassembled the engine to check for excessive wear and deposits; none were found. Komatsu has started to obtain spark assisted data on the baseline engine. Although 100% SRC-II fuel was not attempted, spark assist has made significant contribution to the combustion of 50% SRC-II blend or less. Competitive fuel economy was also obtained with 50% SRC-II blend. Thus, it was shown that spark assist can improve the operating range of blended SRC-II fuel. The major problems are: (1) spark plug cracking, and (2) engine failure due to rough and knocking combustion in the marginal operating range with surface discharge spark plug. The location of the spark plug in the combustion chamber and its timing was found to be quite important. Conventional electrode gap spark will be tried; and if no breakage is encountered, 100% SRC-II fuel will be attempted.
Date: January 1, 1981
Partner: UNT Libraries Government Documents Department

Comparative assessment of health and safety impacts of coal use

Description: Increasing the use of coal to replace oil and gas consumption is considered beneficial for economic and political reasons. The evaluation of this report, however, is that the shift to coal can involve significant health, safety, and environmental impacts compared to those from oil and natural gas systems, which are considerably less adverse than those of any coal energy system in use today. An evaluation and comparison of the potential impacts from the various alternative coal technologies would be useful to both governmental and industrial policy planners and would provide them with information relevant to a decision on assistance, incentives, and prioritization among the energy technologies. It is, therefore, the main objective of this report to review the key health, safety, and environmental impacts of some promising coal energy technologies and to compare them.
Date: March 1, 1980
Partner: UNT Libraries Government Documents Department

Breckinridge Project, initial effort

Description: Report V, Volume 4 provides descriptions, data, and drawings pertaining to Instrument and Plant Air Systems (Plant 36), Telecommunication Systems (Plant 37), Inert Gas Systems (Plant 38), Purge and Flush Oil Systems (Plant 39), Site Development and Roads (Plant 40), Buildings (Plant 41), Solid Waste Management (Plant 42), and Landfill (Plant 44). Instrument and Plant Air Systems (Plant 36) includes all equipment and piping necessary to supply instrument and utility air to the process plants and offsite facilities. Telecommunication Systems (Plant 37) includes the equipment and wiring for: communication throughout the facility; communication between plant data processing systems and offsite computing facilities; and communication with transportation carriers. Inert Gas Systems (Plant 38) provides high purity and low purity nitrogen streams for plant startup and normal operation. Purge and Flush Oil Systems (Plant 39) provides purge and flush oils to various plants. Site Development and Roads (Plant 40) provides site leveling, the addition of roads, fencing, and drainage, and the placement of fills, pilings, footings, and foundations for plants. Buildings (Plant 41) provides buildings for equipment and for personnel, including utilities, lighting, sanitary facilities, heating, air conditioning, and ventilation. Solid Waste Management (Plant 42) identifies, characterizes, segregates, and transports the various types of solid wastes to either Landfill (Plant 44) or outside disposal sites. Landfill (Plant 44) provides disposal of both nonhazardous and hazardous solid wastes. Information is included (as applicable) for each of the eight plants described.
Date: unknown
Partner: UNT Libraries Government Documents Department

Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, June 1, 1980-August 31, 1980

Description: Additional data on the pyrite catalysis of liquefaction of Elkhorn number 3 coal are presented. The liquefaction of Elkhorn number 3 coal was significantly catalyzed by the presence of pyrite. Coal conversion, oil yield and preasphaltene conversion all increased when pyrite was added. An increase in hydrocarbon gas make accompanied by a higher hydrogen consumption were also observed. The higher activity in the presence of pyrite could be utilized by running the liquefaction step at milder conditions which would mean a lower gas make. Although we had heard reports that sulfur elimination from the SRC was improved by use of pyrite, our data showed only very small changes. Nitrogen removal from the solvent, however, was definitely observed. At 850/sup 0/F nitrogen in the oil product went from 1.61 to 1.12 on adding pyrite. This increased nitrogen removal was also seen in the added ammonia yields. Kentucky number 9 coal also responded very well to the presence of pyrite. Conversions and oil yields increased while the hydrocarbon yields decreased at both temperatures that were tested, i.e., 825 and 850/sup 0/F. Hydrogen consumptions also increased. In the screening program the results from testing a number of materials are reported. None of the zeolites gave any significant improvement over coal itself. The iron, molybdenum, nickel, and cobalt rich materials had significant activity, all 85 to 90% conversion with high oil yields.Among materials specifically reported this period the clays failed to show any significant catalytic effect.
Date: September 1, 1980
Creator: Garg, D; Givens, E N; Schweighardt, F K; Clinton, J H; Tarrer, A R; Guin, J A et al.
Partner: UNT Libraries Government Documents Department

Final technical report: SRC burn test in 700-hp oil-designed boiler. Annex Volume D. Electrostatic precipitator mass train and operating data

Description: Solvent Refined Coal (SRC) is one of the viable replacement fuels for No. 6 fuel oil in industrial and utility boilers. The Department of Energy funded the International Coal Refining Company (ICRC) to develop and to demonstrate the use of SRC as a practical fuel. Phase II of the project was to burn the SRC fuels in a 700 hp package boiler and to collect emission data from which air pollution control devices could be specified. Wheelabrator-Frye, Inc., APC Division was contracted by ICRC to supply and operate a pilot electrostatic precipitator (ESP). Mass emission testing was performed by WFI Sciences. Particle size tests, particle resistivity, SO/sub x/ measurements, and particulate counting tests were conducted by Southern Research Institute (SoRI). This report is a source document covering the ESP operating data and mass emission data. The data obtained by SoRI is used by SoRI in their computer model to specify full scale design criteria. The testing was performed with four fuel types; No. 6 fuel oil, SRC fuel, SRC residual fuel oil, and SRC-water slurry. All fuels were precipitated quite easily resulting in emission rates below the NSPS standards.
Date: September 1, 1983
Partner: UNT Libraries Government Documents Department

SRC burn test in 700-hp oil-designed boiler. Annex Volume A. Southern Research Institute report. Final technical report

Description: Combustion tests were performed using three forms of Solvent Refined Coal (SRC) as the fuel for a 700 hp oil-designed water-tube boiler at the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). This report contains the results from a program of measurements and analyses performed by Southern Research Institute (SoRI) under contract to the International Coal Refining Company (ICRC). The major objectives of the work performed by Southern Research Institute were: (1) to characterize the particulate matter resulting from the combustion of Solvent Refined Coal (SRC) and its fuel forms, and (2) to develop estimates of the specific collection areas required for varying levels of collection of fly ash from SRC combustion in electrostatic precipitators. The report contains physical and chemical characterizations of particles collected during the combustion experiments, and a discussion of electrostatic precipitation of SRC fly ash based on performance measurements with a small-scale precipitator and on simulations using a mathematical model. 9 references, 90 figures, 14 tables.
Date: September 1, 1983
Partner: UNT Libraries Government Documents Department

Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report

Description: This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.
Date: May 1, 1982
Partner: UNT Libraries Government Documents Department

Breckinridge Project, initial effort. Report VII, Volume I. Introduction and background. [Storage losses of 28 products and by-products]

Description: The proposed plant site consists of 1594 acres along the Ohio River in Breckinridge County, Kentucky. An option to purchase the site has been secured on behalf of the Breckinridge Project by the Commonwealth of Kentucky Department of Energy. Figure 1 is an area map locating the site with respect to area cities and towns. The nearest communities to the site are the hamlet of Stephensport, Kentucky, about 3-1/2 miles northeast and Cloverport, Kentucky, which is 6 miles to the southwest. The nearest major cities are Owensboro, Kentucky, 45 road miles to the west and Louisville, Kentucky, 65 miles to the northeast. The Breckinridge facility will convert about 23,000 TPD of run-of-mine (ROM) coal into a nominal 50,000 BPD of hydrocarbon liquids including a significant quantity of transportation fuels. Major products refined for marketing include pipeline gas, propane, butane, 105 RONC gasoline reformate, middle distillate and heavy distillate. By-products include sulfur, anhydrous ammonia, and commercial-grade phenol. Care is being taken to minimize the impact of the facility operations on the environment. Water and wastewater treatment systems have been designed to achieve zero discharge. Waste solids will be disposed of in a carefully designed and well-monitored landfill operation. Also, special design features have been included to minimize air emissions.
Date: unknown
Partner: UNT Libraries Government Documents Department

Quarterly technical progress report for the period ending June 30, 1984

Description: The Magnetohydrodynamics Program (Component Development and Integration Facility) in Butte, Montana, continued its site preparation for the TRW first-stage combustor installation. In the area of flue gas cleanup, our in-house research program is continuing its investigation into the causes of sorbent attrition in PETC's fluidized-bed copper oxide process for simultaneous SO/sub 2//NO/sub x/ removal. Interwoven with these tests is a series of spray dryer/electrostatic precipitator tests that are being conducted with the cooperation of Wheelabrator-Frye, Inc. This test series was completed this quarter, and the data show that when using a Kentucky coal, Wheelabrator-Frye's electrostatic precipitator provides excellent particulate control efficiency while using a spray dryer for sulfur dioxide removal. A unique project at Carnegie-Mellon University is looking at the concept of integrated environmental control for coal-fired power plants making use of precombustion, combustion, and postcombustion control, including systems for the simultaneous removal of more than one pollutant. The objective of this research is to develop a computer model and assessment for integrated environmental control systems that utilize conventional or advanced systems. The Liquid Phase Methanol Project Development Unit in LaPorte, Texas, was restarted after a successful shakedown run was completed. PETC has recently begun an in-house research project aimed at exploring the basic chemistry of liquefying coal in the presence of water under supercritical conditions. In the Alternative Fuels Technology Program, the Gulf Research and Development Company has completed the preliminary testing phase of its erosion test loop. Their results indicate that when pumping a coal-water slurry fuel through a flow loop, the erosion rate increases as velocity increases, suggesting a well-defined relationship between these two parameters.
Date: October 1, 1984
Partner: UNT Libraries Government Documents Department