8,112 Matching Results

Search Results

Advanced search parameters have been applied.

Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project

Description: This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.
Date: February 28, 2007
Creator: Horner, Jake A.
Partner: UNT Libraries Government Documents Department

Radioactive Waste Treatment and Disposal--a Bibliography of Unclassified Literature, Part 2

Description: This bibliography of the unclassified literature on radioactive waste treatment and disposal has been compiled from references published in the Nuclear Science Abstracts Volume 11, No. 11 (June 15, 1957), through Volume 12, No. 12 (June 30, 1958). The bibliography brings up to date a previous bibliography published as CF 57-8-138. (auth)
Date: July 22, 1958
Creator: Blomeke, J. O.
Partner: UNT Libraries Government Documents Department

Feasibility study of high-performance pulsed power technology for supporting Hanford Site single-shell tank waste retrieval, March 29, 1996

Description: Westinghouse Hanford Company (WHC) has developed databases on retrieval methods that include more than 155 companies that have technologies potentially applicable to DSST waste retrieval, including the High Performance Pulsed Power Technology (HPT). This report summarizes the feasibility of the technology for supporting retrieval of SST waste. Other potential applications such as unblocking plugs in waste transfer pipelines are described in Appendix C. The feasibility study addresses issues of implementation, operation, and safety with a focus on strengths, weaknesses, and potential pitfalls of the technology. The feasibility study was based on information acquired from TZN GmbH, a German company that developed and manufactures HPT systems for a wide-range of applications. Marketing partners of TZN for this technology are the German company Telerob and R.J. International, the U.S. representative of both companies. An HPT system is capable of fracturing brittle materials into 100-microm particles using electrothermally-generated shock waves. Until now, the technology has been used only to separate glass, metal, ceramic, and plastic components. One primary application of the technology has been in foundries for removing ceramic molds from metal castings. Metals, except for those that are very brittle, are not impacted by the shock wave. The HPT system is highly effective in fracturing and mobilizing ceramic mold materials contained in the crevices of castings that are normally difficult to remove. The HPT system has also been shown to be effective in separating glass in windshields from their protective layers of plastic; concrete from reinforcing rods; ceramic, plastic, and metal materials in computer chips; and ceramic insulation from spark plugs and high-voltage insulators. The HP`T system has been used successfully to bore a 7-in. diameter hole into hard rock at a rate of 33 ft/hr. The HPT system has also been demonstrated successfully in mining applications.
Date: October 1, 1996
Partner: UNT Libraries Government Documents Department

WRAP process area development control work plan

Description: This work plan defines the manner in which the Waste Receiving and Processing Facility, Module I Process Area will be maintained under development control status. This status permits resolution of identified design discrepancies, control system changes, as-building of equipment, and perform modifications to increase process operability and maintainability as parallel efforts. This work plan maintains configuration control as these efforts are undertaken. This task will end with system testing and reissue of field verified design drawings.
Date: February 27, 1997
Creator: Leist, K.L., Fluor Daniel Hanford
Partner: UNT Libraries Government Documents Department

Glass Development for Treatment of LANL Evaporator Bottoms Waste

Description: Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).
Date: November 20, 1998
Creator: Smith, DE; Piepel, GF; Veazey, GW; Vienna, JD; Elliott, ML; Nakaoka, RK et al.
Partner: UNT Libraries Government Documents Department

Corrosion Testing of Low-Activity Waste Glasses Fiscal Year 1998 Summary Report

Description: Analytical results are presented on the chemical composition and other physical properties of a glass, given the identification BNFL-A-S98, made at Pacific Northwest National Laboratory' that is representative of the low-activity waste glass composition proposed by BNFL, Inc.* for immobilization of envelope A double-shell tank wastes at the Hanford Site. This glass was prepared for use in a testing program to be conducted at Pacific Northwest National Laboratory and at Argonne National Laboratory for the purpose of characterizing its long-term corrosion behavior. Detailed examination of the glass microstructure using transmission electron microscopy showed structural features indicative of amorphous phase separation. A remelt was performed on a smaller batch (100 g) to ensure rapid cooling. The glass microstructure was reexamined and showed no evidence of phase separation. Selected long-term (some to 860 d) product consistency tests were terminated, and the leachates were analyzed on tests with three other representative low-activity waste glass formulations (L8- 1, L8-3, and L8-7). The results showed no evidence of corrosion rate acceleration at three times the duration of tests where another well-studied glass, LD6-5412, had been completely altered under identical test conditions. These tests (and others not discussed in this report) provide clear evidence that low-activity waste glasses with at least 20 mass% Na20 can be made that have excellent long-term corrosion resistance. However, glass composition has a large impact on long-term behavior and so careful experiments with several different techniques are essential to ensuring that a particular glass will have good long-term corrosion resistance.
Date: November 25, 1998
Creator: McGrail, BP; Lindenmeier, CW; Schaef, HT & Martin, PF
Partner: UNT Libraries Government Documents Department

Evaluation procedure for radioactive waste treatment processes

Description: An aspect of the Los Alamos Scientific Laboratory's nuclear waste management R and D programs has been to develop an evaluation procedure for radioactive waste treatment processes. This report describes the process evaluation method. Process worth is expressed as a numerical index called the Figure-of-Merit (FOM), which is computed using a hierarchial, linear, additive, scoring model with constant criteria weights and nonlinear value functions. A numerical example is used to demonstrate the procedure and to point out some of its strengths and weaknesses. Potential modifications and extensions are discussed, and an extensive reference list is included.
Date: November 1, 1979
Creator: Whitty, W.J.
Partner: UNT Libraries Government Documents Department

Maintenance Implementation Plan for the Grout Facility

Description: The objective of the Maintenance Implementation Plan (MIP) is to describe how the Grout Treatment Facility will implement the requirements established by US Department of Energy (DOE) Order 4330.4A, Maintenance Management Program, Chapter 2.0 Nuclear Facilities (DOE 1990). The plan provides a blueprint for a disciplined approach to implementation and compliance. Each element of the order is prioritized, categorized, and then placed into one of three phases for implementation.
Date: August 1, 1993
Creator: Yoakum, A. K.
Partner: UNT Libraries Government Documents Department

Statistical analysis of DWPF reference canister dimensions

Description: Twenty dimensional measurements were conducted on seven empty Defense Waste Processing Facility (DWPF) reference canisters. These measurements were repeated after the canisters were filled with simulated nuclear waste glass. An in-depth statistical analysis of the results indicated that changes do occur as a result of filling the steel canisters with glass poured at 1150{degree}C for four of the parameters. While small, these changes were statistically significant. The analysis indicates the maximum dimensional change found to occur after the filling for each variable. Statistical tests were used to determine if canister dimensions do significantly change, and corresponding variance information is presented. The results showed that the four measured parameters affected by filling are bottom diameter, bottom end diameter flange tilt, and lower head mismatch. Significant variability also existed for height, upper weld, ID label, lower head mismatch, and lower head ovality due to the measurements coming from different canisters. Finally, lower head mismatch showed variability caused by the data being taken at different locations on the canister. This location effect did not affect any of the other variables in this way.
Date: September 10, 1992
Creator: Pickett, M. A. & Brown, K. G.
Partner: UNT Libraries Government Documents Department

Phase Identification of Seismic Borehole Samples

Description: This report documents the phase identification results obtained by x-ray diffraction (XRD) analysis of samples taken from borehole C4998 drilled at the Waste Treatment Plant (WTP) on the Hanford Site (REF). XRD samples were taken from fractures and vesicles or are minerals of interest at areas of interest within the basalt formations cored. The samples were powder mounted and analyzed. Search-match software was used to select the best match from the ICDD mineral database based on peak locations and intensities.
Date: November 1, 2006
Creator: Crum, Jarrod V. & Riley, Brian J.
Partner: UNT Libraries Government Documents Department

Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

Description: Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.
Date: December 15, 2006
Creator: Barnett, D. BRENT & Garcia, Benjamin J.
Partner: UNT Libraries Government Documents Department

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996

Description: This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.
Date: January 28, 2007
Creator: Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben & Rust, Colleen F.
Partner: UNT Libraries Government Documents Department

Site-Specific Velocity and Density Model for the Waste Treatment Plant, Hanford, Washington.

Description: This report documents the work conducted under the SBP to develop a shear wave and compressional wave velocity and density model specific to the WTP site. Section 2 provides detailed background information on the WTP site and its underlying geology as well as on the Seismic Boreholes Project activities leading up to the Vs and Vp measurements. In Section 3, methods employed and results obtained are documented for measurements of Vs and Vp velocities in basalts and interbeds. Section 4 provides details on velocity measurements in the sediments underlying the WTP. Borehole gravity measurements of density of the subsurface basalt and sediments are described in Section 5. Section 6 describes the analysis of data presented in section 3-5, and presents the overall velocity and density model for the WTP site.
Date: June 27, 2007
Creator: Rohay, Alan C. & Brouns, Thomas M.
Partner: UNT Libraries Government Documents Department


Description: Data on waste volumes and heat generation of several reactor fuels which may be reprocessed in the Power Reactor Fuel Reprocessing Pilot Plant at ORNL are tabulated. (auth) l6876 A tabulation containing information on the power of existing and proposed U. S. and U. S.-built reactors of 10 kw or greater thermal power is presented. Estimated fuel reprocessing loads for irradiated fuels are also iucluded. (auth)
Date: June 19, 1959
Creator: Conger, W L
Partner: UNT Libraries Government Documents Department


Description: The United States Atomic Energy Commission program of assistance to the European Company for the Chemical Processing of Irradiated Fuels ("Eurochemic"), Mol, Belgium, is presented. Included are: background, formation, purpose, and structure of the Company; basic design considerations and a brief description of the proposed plant; present status of the and a list of participating organizations and members. (auth)
Date: December 31, 1958
Creator: Shank, E.M.
Partner: UNT Libraries Government Documents Department

Waste management safeguards project: History of and recommendations for development activities in support of safeguards of final disposal of spent fuel

Description: Coordinated safeguards assessment and development activities in support of the U.S. Civilian Radioactive Waste Management System (CRWMS) and international safeguards objectives were initiated in Fiscal Year 1987. Initial technical support activities were performed at the direction of the U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM); however, as the priority of support activities changed, direction for the support tasks was transferred to the U.S. Department of State (State), the DOE Office of Arms Control and Nonproliferation (DOE/IS-40), and the U.S. Nuclear Regulatory Commission (NRC). The direction for technical support activities was established at the International Atomic Energy Agency`s (IAEA`s) advisory group meeting and subsequent consultants` meetings on safeguards related to the final disposal of nuclear material contained in waste and spent fuel. Task directions for the development of international safeguards in support of the final disposal of spent fuel are currently being provided by DOE/IS-40. A summary of safeguards activities performed by the Waste Management Safeguards Project is provided. Systems for design information verification for spent fuel consolidation and conditioning operations are needed immediately. Safeguards approaches for maintaining continuity of knowledge of spent fuel processed at the conditioning facility and for verification of the final disposal package will be needed within three years. Systems for design information verification of the repository facilities will be needed by the end of the decade.
Date: February 16, 1994
Creator: Moran, B.W.
Partner: UNT Libraries Government Documents Department

The Hanford spent nuclear metal fuel multi-canister overpack and vacuum drying {ampersand} hot conditioning process

Description: Nuclear production reactors operated at the U.S. Department of Energy`s Hanford Site from 1944 until 1988 to produce plutonium. Most of the irradiated fuel from these reactors was processed onsite to separate and recover the plutonium. When the processing facilities were closed in 1992, about 1,900 metric tons of unprocessed irradiated fuel remained in storage. Additional fuel was irradiated for research purposes or was shipped to the Hanford Site from offsite reactor facilities for storage or recovery of nuclear materials. The fuel inventory now in storage at the Hanford Site is predominantly N Reactor irradiated fuel, a metallic uranium alloy that is coextruded into zircaloy-2 cladding. The Spent Nuclear Fuel Project has rommitted to an accelerated schedule for removing spent nuclear fuel from the Hanford Site K Basins to a new interim storage facility in the 200 Area. Under the current proposed accelerated schedule, retrieval of spent nuclear fuel stored in the K East and West Basins must begin by December 1997 and be completed by December 1999. A key part of this action is retrieving fuel canisters from the water-filled K Basin storage pools and transferring them into multi@ister overpacks (MCOS) that will be used to handle and process the fuel, then store it after conditioning. The Westinghouse Hanford Company has developed an integrated process to deal with the K Basin spent fuel inventory. The process consists of cleaning the fuel, packaging it into MCOS, vacuum drying it at the K Basins, then transporting it to the Canister Storage Building (CSB) for staging, hot conditioning, and interim storage. This presentation dekribes the MCO function, design, and life-cycle, including an overview of the vacuum drying and hot conditioning processes.
Date: May 15, 1996
Creator: Irwin, J.J.
Partner: UNT Libraries Government Documents Department