127 Matching Results

Search Results

Advanced search parameters have been applied.

Laccolith Complexes of Southeastern Utah: Time of Emplacement and Tectonic Setting Workshop Proceedings

Description: This report summarizes much of the materials presented at the workshop and provides an extensive list of selected references pertaining to geochronology and tectonics of the Colorado Plateau to facilitate further research.
Date: 1998
Creator: Friedman, Jules D. & Huffman, Curtis Jr.
Partner: UNT Libraries Government Documents Department

Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

Description: The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.
Date: September 1, 2010
Creator: Keating, Gordon N.; Schultz-Fellenz, Emily S. & Miller, Elizabeth D.
Partner: UNT Libraries Government Documents Department

Shorter Contributions to General Geology, 1928

Description: From introduction: The district discussed in this report embraces the entire northern peninsula of Michigan and the parts of northern Wisconsin and northeastern Minnesota that were covered by a re-advance of the Superior lobe of the Labrador ice sheet late in the Wisconsin stage of glaciation.
Date: 1929
Creator: Mendenhall, W. C.
Partner: UNT Libraries Government Documents Department

Postglacial Volcanic Deposits at Mount Baker, Washington, and Potential Hazards From Future Eruptions

Description: Abstract: Eruptions and other geologic events at Mount Baker during the last 10,000 years have repeatedly affected adjacent areas, especially the valleys that head on the south and east sides of the volcano. Small volumes of tephra were erupted at least four times during the past 10,000 years. Future eruptions like these could cause as much as 35 centimeters of tephra to be deposited at sites 17 kilometers from the volcano, 15 centimeters of tephra to be deposited 29 kilometers from the volcano, and 5 centimeters, 44 kilometers from the volcano. Lava flows were erupted at least twice during the last 10,000 years and moved down two valleys. Future lava flows will not directly endanger people because lava typically moves so slowly that escape is possible. Hot pyroclastic flows evidently occurred during only one period and were confined to the Boulder Creek valley. Such flows can move at speeds of as much as 150 kilometers per hour and can bury valley floors under tens of meters of hot rock debris for at least 15 kilometers from the volcano. Large mudflows, most of which contain hydrothermally altered rock debris, originated at Mount Baker at least eight times during the last 10,000 years. The largest mudflow reached 29 kilometers or more down the valley of the Middle Fork Nooksack River, west of the volcano, about 6,000 years ago. Extensive masses of hydrothermally altered rock that are potentially unstable exist today near the summit of the volcano, especially in the Sherman Crater-Sherman Peak area. Avalanches of this material could be triggered by stream explosions, earthquakes, or eruptions, or may occur because of slow-acting forces or processes that gradually decrease stability. Large avalanches could move downslope at high speed and could grade downvalley into mudflows. Floods caused by rapid melting of snow and ice ...
Date: 1978
Creator: Hyde, Jack H. & Crandell, Dwight Raymond
Partner: UNT Libraries Government Documents Department

Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

Description: Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.
Date: September 20, 2008
Creator: Toner, Brandy M.; Fakra, Sirine C.; Manganini, Steven J.; Santelli, Cara M.; Marcus, Matthew A.; Moffett, James W. et al.
Partner: UNT Libraries Government Documents Department

Geochemical Data on Waters, gases, scales, and rocks from the Dixie Valley Region, Nevada (1996-1999)

Description: This report tabulates an extensive geochemical database on waters, gases, scales, rocks, and hot-spring deposits from the Dixie Valley region, Nevada. The samples from which the data were obtained were collected and analyzed during 1996 to 1999. These data provide useful information for ongoing and future investigations on geothermal energy, volcanism, ore deposits, environmental issues, and groundwater quality in this region.
Date: August 1, 2002
Creator: Goff, Fraser; Bergfeld, Deborah; Janik, C.J. & al, et
Partner: UNT Libraries Government Documents Department

Combined U-Th/He and 40Ar/39Ar geochronology of post-shield lavas from the Mauna Kea and Kohala volcanoes, Hawaii

Description: Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the Big Island of Hawaii have been dated using the {sup 40}Ar/{sup 39}Ar and U-Th/He methods. The objective of the study is to compare the recently demonstrated U-Th/He age method, which uses basaltic olivine phenocrysts, with {sup 40}Ar/{sup 39}Ar ages measured on groundmass from the same samples. As a corollary, the age data also increase the precision of the chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He concentrations and isotopes were measured to account for U-series disequilibrium and initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are 87 {+-} 40 ka to 119 {+-} 23 ka (2{sigma} uncertainties), which are in general equal to or younger than {sup 40}Ar/{sup 39}Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age of 354 {+-} 54 ka and a {sup 40}Ar/{sup 39}Ar age of 450 {+-} 40 ka. All of the U-Th/He ages, and all but one spurious {sup 40}Ar/{sup 39}Ar ages conform to the previously proposed stratigraphy and published {sup 14}C and K-Ar ages. The ages also compare favorably to U-Th whole rock-olivine ages calculated from {sup 238}U - {sup 230}Th disequilibria. The U-Th/He and {sup 40}Ar/{sup 39}Ar results agree best where there is a relatively large amount of radiogenic {sup 40}Ar (>10%), and where the {sup 40}Ar/{sup 36}Ar intercept calculated from the Ar isochron diagram is close to the atmospheric value. In two cases, it is not clear why U-Th/He and {sup 40}Ar/{sup 39}Ar ages do not agree within uncertainty. U-Th/He and {sup 40}Ar/{sup 39}Ar results diverge the most on a low-K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with negligible olivine phenocrysts, U-Th/He ages were unattainable while {sup 40}Ar/{sup 39}Ar ...
Date: October 1, 2009
Creator: Aciego, S.M.; Jourdan, F.; DePaolo, D.J.; Kennedy, B.M.; Renne, P.R. & Sims, K.W.W.
Partner: UNT Libraries Government Documents Department

1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

Description: Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities.
Date: October 1, 1993
Creator: Wells, S.G.
Partner: UNT Libraries Government Documents Department

Renewal: Continential lithosphere evolution as a function of tectonic environment

Description: The Cenozoic tectonic environment and stress regime of the southwestern United States have changed dramatically from compression during shallow-angle subduction during the Laramide orogeny in the early Cenozoic to the current mode of Basin and Range extension. Questions remain unresolved concerning the causes of this transition, including the timing of the initiation of extension (estimates range from 36 to 25 Ma), and is the Basin and Range simply an mega-example of back-arc extension, or is extension related to the subduction of an oceanic spreading center about 30 Ma? We have examined the patterns of magmagenesis and geochemical composition through Cenozoic time in southern New Mexico. We have defined four magma sources that have contributed to Cenozoic magmas. Immediately following the Laramide, magmas contain substantial contributions from the lower crust. Mid-Tertiary extension is related to the eruption of rhyolitic ash-flow tuffs and basalts. The basalts were generated by melting of the lithospheric mantle; intercalated rhyolites have a strong upper crustal signature. Eruption of basalts and andesites with sources in the lithospheric mantle and lower crust continued for several million years after rhyolitic volcanism ceased. The region was nearly void of volcanic activity for 16 million years despite continued extension, but at 10 Ma, basalts derived from the asthenosphere began to erupt.
Date: June 1, 1995
Creator: McMillan, N.J. & Baldridge, W.S.
Partner: UNT Libraries Government Documents Department

Computer simulations of explosive volcanic eruptions

Description: We have adapted computer codes that provide such solutions to study explosive volcanic phenomena. These fully nonlinear conservation equations are cast in two-dimensional cylindrical coordinates, which with closure equations comprise 16 equations with 16 unknown variables. Solutions for several hundred seconds of simulated eruption time require two to three hours of a Cray-1 computer time. Over 100 simulations have been run to simulate the physics of highly unsteady blasts, sustained and steady Plinian eruptions, fountaining, column eruptions, and multiphase flow of magma in lithospheric conduits. The unsteady-flow calculations show resemblance to shock-tube physics with propagation of shock waves into the atmosphere and rarefaction waves down the volcanic conduit. Steady-flow eruption simulations demonstrate the importance of supersonic flow and over pressure of erupted jets of tephra and gases in determining whether the jet will buoyantly rise or collapse back to the earth as a fountain. Flow conditions within conduits rising through the lithosphere determine eruptive conditions of overpressure, velocity, bulk density, and vent size. Such conditions within conduit systems are thought to be linked to low-frequency, sustained seismicity known as volcanic tremor. These calculations demonstrate the validity of some analytical eruption calculations under limited conditions. 31 refs., 10 figs., 1 tab.
Date: January 1, 1989
Creator: Wohletz, K.H. & Valentine, G.A.
Partner: UNT Libraries Government Documents Department

Geophysical Evidence for the Availability of Geothermal Energy in New Britian

Description: This paper combines some of the results and interpretations of geological mapping, seismic refraction, marine seismic, and gravity surveys to show that large tracts of New Britain could be favorable targets for geothermal power development. It is shown that the fractured and faulted lithosphere is associated with grabens and rifts in which mantle material has risen to within 10 to 15 km from the surface. The grabens and rifts are marked by volcanism in which the dominant volcanic rocks are olivine--and tholeiitic--basalts, with a sprinkling of more acid volcanics ranging from dacite to andesite. Following A. Rittman the basalts are believed to have originated in the asthenosphere when the lithosphere was broken up under a tensional stress regime; the acid volcanics were formed by magmatic differentiation within the crust. it was argued that ideal geothermal reservoirs are capped with altered ash deposits or other nonpermeable volcanics. To feed such reservoirs conduits are required which are naturally located on fault or shear zones. The two areas selected as favorable for future geothermal power development are located between Talasea and Lolobau Is., say around Hoskins; and near Rabaul, between Matupi Harbor and Matupi. As a type area, the rift between the Gazelle Peninsula and New Ireland resembles the Afar triangle, at the northern end of the Great Valley Rift system of Africa.
Date: January 1, 1974
Creator: Wiebenga, W. A. & Furumoto, A. S.
Partner: UNT Libraries Government Documents Department

Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

Description: Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.
Date: December 1, 1981
Creator: Motyka, R.J.; Moorman, M.A. & Liss, S.A.
Partner: UNT Libraries Government Documents Department

Modeling Temporal-Spatial Earthquake and Volcano Clustering at Yucca Mountain, Nevada

Description: The proposed national high-level nuclear repository at Yucca Mountain is close to Quaternary faults and cinder cones. The frequency of these events is low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a 3D finite element model on the expectation that faulting and basalt intrusions are primarily sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that dike inflation favored renewed fault slip.
Date: May 31, 2006
Creator: Parsons, T.; Thompson, G.A. & Cogbill, A.H.
Partner: UNT Libraries Government Documents Department

Structure of the Lithosphere and Upper Mantle Across the Arabian Peninsula

Description: Analysis of modern broadband (BB) waveform data allows for the inference of seismic velocity structure of the crust and upper mantle using a variety of techniques. This presentation will report inferences of seismic structure of the Arabian Plate using BB data from various networks. Most data were recorded by the Saudi Arabian National Digital Seismic Network (SANDSN) which consists of 38 (26 BB, 11 SP) stations, mostly located on the Arabian Shield. Additional data were taken from the 1995-7 Saudi Arabian IRIS-PASSCAL Deployment (9 BB stations) and other stations across the Peninsula. Crustal structure, inferred from teleseismic P-wave receiver functions, reveals thicker crust in the Arabian Platform (40-45 km) and the interior of the Arabian Shield (35-40 km) and thinner crust along the Red Sea coast. Lithospheric thickness inferred from teleseismic S-wave receiver functions reveals very thin lithosphere (40-80 km) along the Red Sea coast which thickens rapidly toward the interior of the Arabian Shield (100-120 km). We also observe a step of 20-40 km in lithospheric thickness across the Shield-Platform boundary. Seismic velocity structure of the upper mantle inferred from teleseismic P- and S-wave travel time tomography reveals large differences between the Shield and Platform, with the Shield being underlain by slower velocities, {+-}3% for P-waves and {+-}6% for S-waves. Seismic anisotropy was inferred from shear-wave splitting, using teleseismic SKS waveforms. Results reveal a splitting time of approximately 1.4 seconds, with the fast axis slightly east of north. The shear-wave splitting results are consistent across the Peninsula, with a slight clockwise rotation parallel for stations near the Gulf of Aqaba. In summary, these results allow us to make several conclusions about the tectonic evolution and current state of the Arabian Plate. Lithospheric thickness implies that thinning near the Red Sea has accompanied the rupturing of the Arabian-Nubian continental lithosphere. ...
Date: January 5, 2007
Creator: Al-Amri, A & Rodgers, A
Partner: UNT Libraries Government Documents Department

Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

Description: Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.
Date: August 22, 2008
Creator: Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X et al.
Partner: UNT Libraries Government Documents Department

Isotopic prediction of eruption volume at continental volcanoes

Description: This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project was to determine whether isotopic techniques can be used to assess the eruption potential and eruption volume of continental stratovolcanoes. Large-volume eruptions from stratovolcanoes pose significant hazards to population and infrastructure in many parts of the world. We are testing whether this technique will allow a short- to medium-term (decades to millennia) probabilistic hazard assessment of large-volume eruptions. If successful, the technique will be useful to countries or regions that must consider medium to long-term volcanic (e.g., nuclear waste facilities). We have begun sample acquisition and isotopic measurements at two stratovolcanoes, Pico de Orizaba in eastern Mexico and Daisen in western Japan.
Date: October 1, 1997
Creator: Perry, F.V.; Valentine, G.A. & Crowe, B.M.
Partner: UNT Libraries Government Documents Department

Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

Description: Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.
Date: December 1994
Creator: Hackett, W. R. & Smith, R. P.
Partner: UNT Libraries Government Documents Department

Center for Volcanic and Tectonic Studies: 1992--1993 annual report

Description: The annual report of the Center for Volcanic Studies (CVTS) contains a series of papers, reprints and a Master of Science thesis that review the progress made by the CVTS between October 1, 1992 and February 1, 1994. During this period CVTS staff focused on several topics that have direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics include: (1) polygenetic/polycyclic volcanism in Crater Flat, Nevada; (2) the role of the mantle during crustal extension; (3) the detailed geology of Crater Flat, Nevada; (4) Pliocene volcanoes in the Reveille Range, south-central Nevada; (5) estimating the probability of disruption of the proposed repository by volcanic eruptions. This topic is being studied by Dr. C.H. Ho at UNLV. The report contains copies of these individual papers as they were presented in various conference proceedings.
Date: December 31, 1994
Partner: UNT Libraries Government Documents Department

(Investigation of subcooled hydrothermal boiling in ground water flow channels as a source of harmonic tremors)

Description: As a first step toward assessing the ability of hydrothermal boiling to explain geothermal ground noise and volcanic tremor observations, we are investigating the acoustic power spectrum of boiling (the source'' spectrum in the above model). We simulate boiling in the lab by injecting high pressure steam from a boiler into a pressure vessel filled with water. The water pressure fluctuations that result from the repeated formation and collapse of steam bubbles at the steam inlet vents are recorded by a hydrophone whose output is digitized at 2 {times} 10{sup 4} samples/second by a computer. The range of pressure and temperature conditions attainable within the pressure vessel is limited to <3.5 bars, <139{degree}C, due to the finite strength of observation windows affixed to the pressure vessel. Therefore, dimensional analysis will be used to correlate the experimental results with the pertinent experimental variables. Besides the overall shape of the boiling power spectrum, we are investigating the absolute spectral levels in frequency bands typical of geothermal ground noise and volcanic tremor (0.5 Hz-10 Hz), and the ratio of acoustic power liberated to total available power. The values of these parameters are critical to hydrothermal boiling's ability to generate ground motion amplitudes in accordance with observation. If it can be shown that the range of observed ground noise/tremor amplitudes can be accounted for by hydrothermal boiling at reasonable heat transfer rates, this knowledge would be invaluable to designers of seismic monitoring experiments who are interested in geothermal resource exploration/evaluation and volcanic eruption prediction.
Date: January 1, 1989
Partner: UNT Libraries Government Documents Department

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

Description: Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.
Date: September 25, 2006
Creator: Stuckless, J.S. & O'Leary, D.
Partner: UNT Libraries Government Documents Department

Heat flow patterns of the North American continent: A discussion of the DNAG Geothermal Map of North America

Description: The large and small-scale geothermal features of the North American continent and surrounding ocean areas illustrated on the new 1:5,000,000 DNAG Geothermal Map of North America are summarized. Sources for the data included on the map are given. The types of data included are heat flow sites coded by value, contours of heat flow with a color fill, areas of major groundwater effects on regional heat flow, the top-of-geopressure in the Gulf Coast region, temperature on the Dakota aquifer in the midcontinent, location of major hot springs and geothermal systems, and major center of Quaternary and Holocene volcanism. The large scale heat flow pattern that is well known for the conterminous United States and Canada of normal heat flow east of the Cordillera and generally high heat flow west of the front of the Cordillera dominates the continental portion of the map. However, details of the heat flow variations are also seen and are discussed briefly in this and the accompanying papers.
Date: January 1, 1990
Creator: Blackwell, David D.; Steele, John L. & Carter, Larry C.
Partner: UNT Libraries Government Documents Department