55 Matching Results

Search Results

Advanced search parameters have been applied.

Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

Description: Utility Systems Efficiencies, Inc. was tasked by Lawrence Berkeley National Laboratory (LBNL) to conduct dynamic simulation studies of the three U.S. interconnections (Eastern, Western, and Texas). The simulations were prepared in support of LBNL's project for the Federal Energy Regulatory Commission to study frequency-response-related issues that must be addressed to operate the power system reliably with large amounts of variable renewable generation. The objective of the simulation studies of each interconnection was to assess the effects of different amounts of wind generation on frequency behavior of each interconnection following a sudden loss of generation. The scenarios created to study these effects considered an operating circumstance in which system load is at or close to its minimum. The event studied was the sudden loss of the largest amount of generation recorded within each interconnection. The simulations calculated the impact of this event on interconnection frequency for three levels of wind generation. In addition to varying the amount of wind generation, the simulations varied the amount of operating reserves between a high level representative of current operating practices and a low level representative of the minimum required by present operating rules.
Date: December 20, 2010
Creator: Mackin, Peter; Daschmans, R.; Williams, B.; Haney, B.; Hung, R. & Ellis, J.
Partner: UNT Libraries Government Documents Department

Efficient and Reliable Reactive Power Supply and Consumption --Insights from an Integrated Program of Engineering and EconomicResearch

Description: In 2005, the Federal Energy Regulatory Commission (FERC) began discussing regulatory policy for reactive-power procurement and pricing in competitive electricity markets. This paper summarizes findings from a unique, interdisciplinary program of public-interest research that lays a formal foundation for evaluating aspects of FERC staff recommendations and offers early insights that should be useful in guiding policy implementation, specifically by: (1) clarifying the consumers and economic characteristics of reactive power as a basis for creating incentives to appropriately price it, (2) defining specific challenges in creating a competitive market for reactive power as well as new tools needed to help ensure such a market functions efficiently, and (3) demonstrating the importance of accounting for the physical characteristics of the transmission network in planning for reactive power and avoiding the exercise of market power by suppliers.
Date: January 1, 2008
Creator: Thomas, Robert J.; Mount, Timothy D.; Schuler, Richard; Schulze,William; Zimmerman, Ray; Alvarado, Fernando et al.
Partner: UNT Libraries Government Documents Department

Research report: Summary of key state issues of FERC orders 888 and 889

Description: The Federal Energy Regulatory Commission`s (FERC) Order 888 is perhaps the most important and far reaching FERC electricity order in decades. The consequences on the structure of the industry and how the industry is regulated are significant departures from past methods and regulatory philosophy. This will undoubtedly have a dramatic impact on the manner in which state public utility commissions, which are also undergoing or considering dramatic change, regulate their jurisdictional electric utilities. This report summarizes and discusses the actions that the FERC is taking and their profound repercussions on the industry and state commissions. The report is not a comprehensive summary of the entire order. Rather, it is intended to highlight the order`s more important features and discuss what this could mean for the states. The report is organized into eight sections; the first seven address Order 888 and the last section (section 8) addresses Order 889. Section 1 through 5 summarize and discuss the main features of Order 888. Section 6 (on jurisdiction) and Section 7 (on property rights) interpret the likely consequences of the order. Section 8, summarizes the FERC`s Open Access Same Time System (OASIS) and discusses some concerns about its real-world application.
Date: January 1, 1997
Creator: Rose, K.; Burns, R.E. & Graniere, R.J.
Partner: UNT Libraries Government Documents Department

Federal Energy Regulatory Commission fiscal year 1997 annual financial statements

Description: This report presents the results of the independent certified public accountants` audit of the Federal Energy Regulatory commission`s statements of financial position, and the related statements of operations and changes in net position. The auditors` work was conducted in accordance with generally accepted government auditing standards. An independent public accounting firm conducted the audit. The auditors` reports on the Commission`s internal control structure and compliance with laws and regulations disclosed no reportable conditions or instances of noncompliance.
Date: February 24, 1998
Partner: UNT Libraries Government Documents Department

Audit of the Federal Energy Regulatory Commission leased warehouse space

Description: The Federal Energy Regulatory Commission (Commission) stores furniture, automated data processing equipment, and office supplies in a warehouse located in Landover, Maryland. The annual operating cost for this space (25,830 square feet) approximates $455,000-$245,000 in lease costs and $210,000 for contractor personnel. The purpose of the audit was to assess the effectiveness of the Commission`s use of warehouse space. The specific audit objective was to determine whether the Commission was minimizing the need for warehouse space for the storage of office supplies, furniture, and equipment. Federal Property Management Regulations and prudent business practices require Government agencies to minimize their need for space. More space was being leased than needed because Commission officials understood that they were obligated by terms of the lease to -pay for the space until March 31, 2002. We found, however, that there was a misunderstanding by officials, and that the Commission could at any time relinquish warehouse space by giving 120 days notice. Because of this misunderstanding and the recent relocation of the Commission to a newly furnished facility, about 16,000 square feet of warehouse space was being used to store furniture and equipment that was no longer needed by the Commission. An additional 6,000 square feet of space was used to store office supplies instead of using a more frequent ordering program that would reduce space requirements.
Date: May 24, 1996
Partner: UNT Libraries Government Documents Department

National policy dialogue on state and federal regulation of the electricity industry - staff report on a Keystone policy dialogue

Description: For over two years, The Keystone Center facilitated a dialogue on State and Federal Regulation of the Electricity Industry. The intent of this report is to assist policy-makers faced with decisions about changes to traditional utility regulation and planning and provide an overview of a diverse group`s deliberations on regulatory jurisdictional conflicts. This report is not a consensus document, rather it is a staff written summary of two years of discussion on the issues. The participants in the Keystone Dialogue believed that all affected interests could benefit from, if nothing else, a summary of their discussions of state/federal issues. The electric utility industry is one of the last remaining, heavily regulated industries in the United States. Rate and corporate regulation is split between state and federal governments and there is distinct regulatory authority at each level. For example, retail rate regulation occurs at the state level, the Federal Energy Regulatory Commission is responsible for wholesale rate regulation under the Federal Power Act, and the Securities and Exchange Commission oversees registered utility holding companies as defined under the Public Utility Holding Company Act of 1935. This jurisdictional split between state and federal regulation has evolved over many years through legislation and litigation on such matters. The creation of this allocation of regulatory responsibility was initiated in 1935 with the passage of the Public Utility Holding Company Act and the Federal Power Act when the economic and technological changes that are now occurring in the industry simply could not have been envisioned.
Date: May 1, 1996
Partner: UNT Libraries Government Documents Department

RTG resource book for western states and provinces: Final proceedings

Description: The Western Interstate Energy Board held a workshop and liaison activities among western states, provinces, and utilities on the formation of Regional Transmission Groups (RTGs). Purpose of the activities was to examine the policy implications for western states and provinces in the formation of RTGs in the West, the implications for western ratepayers and utilities of the RTG formation and potential impacts of RTGs on the western electricity system. The workshop contributed to fulfilling the transmission access and competition objectives of Title VII of the Energy Policy Act of 1992.
Date: December 31, 1994
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within ...
Date: February 1, 2004
Creator: Kieba, Maximillian J.
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within ...
Date: October 29, 2004
Creator: Kieba, Maximillian J. & Ziolkowski, Christopher J.
Partner: UNT Libraries Government Documents Department

Audit of the Federal Energy Regulatory Commission`s Office of Chief Accountant

Description: The Federal Energy Regulatory Commission`s (Commission) mission is to oversee America`s natural gas and oil pipeline transportation, electric utility, and hydroelectric power industries to ensure that consumers receive adequate energy supplies at just and reasonable rates. To carry out this mission, the Commission issues regulations covering the accounting, reporting, and rate-making requirements of the regulated utility companies. The Commission`s Office of Chief Accountant performs financial related audits at companies to ensure compliance with these regulations. The purpose of this audit was to evaluate the office of Chief Accountant`s audit performance. Specifically, the objectives were to determine if the most appropriate audit approach was used and if a quality assurance process was in place to ensure reports were accurate and supported by the working papers.
Date: April 7, 1995
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within ...
Date: June 30, 2004
Creator: Kieba, Maximillian J. & Ziolkowski, Christopher J.
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within ...
Date: October 1, 2003
Creator: Kieba, Maximillian J.
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project aimed at developing a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GTI. GTI proposed to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done ...
Date: January 17, 2005
Creator: Kieba, Maximillian J. & Ziolkowski, Christopher J.
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within ...
Date: May 3, 2004
Creator: Kieba, Maximillian J.
Partner: UNT Libraries Government Documents Department

Demand Response in U.S. Electricity Markets: Empirical Evidence

Description: Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.
Date: June 1, 2009
Creator: Cappers, Peter; Goldman, Charles & Kathan, David
Partner: UNT Libraries Government Documents Department

A Study of United States Hydroelectric Plant Ownership

Description: Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.
Date: June 1, 2006
Creator: Hall, Douglas G
Partner: UNT Libraries Government Documents Department

Federal Energy Regulatory Commission financial statements, September 30, 1995 and 1994

Description: The attached report presents the results of the independent certified public accountant`s audit of the Federal Energy Regulatory Commission`s (FERC) financial statements as of September 30, 1995 and 1994. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on FERC`s internal control structure and on compliance with laws and regulations, and management letter are also provided.
Date: February 12, 1996
Partner: UNT Libraries Government Documents Department

Unbundling generation and transmission services for competitive electricity markets

Description: Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is ...
Date: January 1, 1998
Creator: Hirst, E. & Kirby, B.
Partner: UNT Libraries Government Documents Department

Ancillary services

Description: Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC identified six ancillary services reactive power and voltage control, loss compensation, scheduling and dispatch, load following, system protection, and energy imbalance. Our earlier work identified 19 ancillary services Here we offer a revised set of seven ancillary services and mention several other services that merit consideration. In preparing its final rule on open-access transmission service, we suggest that FERC consider splitting its system-protection service into its two primary pieces, reliability reserve and supplemental-operating reserve. We also suggest that FERC define more sharply all of the ancillary services. especially load-following reserve and energy imbalance. Finally, we suggest that FERC consider other services and their provision in a restructured electricity industry; these services include black-start capability, time correction, standby service. planning reserve, redispatch. transmission services, power quality, and planning and engineering services.
Date: January 1, 1996
Creator: Hirst, E. & Kirby, B
Partner: UNT Libraries Government Documents Department

Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

Description: This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.
Date: December 31, 1991
Partner: UNT Libraries Government Documents Department

Energy policy act transportation study: Interim report on natural gas flows and rates

Description: This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.
Date: November 17, 1995
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be ...
Date: January 30, 2003
Creator: Kieba, Maximillian J.
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be ...
Date: August 30, 2002
Creator: Kieba, Maximillian J.
Partner: UNT Libraries Government Documents Department

DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

Description: This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be ...
Date: November 27, 2002
Creator: Kieba, Maximillian J.
Partner: UNT Libraries Government Documents Department