2,659 Matching Results

Search Results

Advanced search parameters have been applied.

Fracture Characteristics in a Disposal Pit on Mesita del Buey, Los Alamos National Laboratory

Description: The characteristics of fractures in unit 2 of the Tshirege Member of the Bandelier Tuff were documented in Pit 39, a newly excavated 13.7 m deep disposal pit at Material Disposal Area G on Mesita del Buey. The average spacing between fractures is about 1.0 to 1.3 m, the average fracture aperture is about 3 to 5 mm, and the average fracture dip is about 76o to 77o. Fracture spacing and dip in Pit 39 are generally consistent with that reported from other fracture studies on the Pajarito Plateau, although the fracture apertures in Pit 39 are less than reported elsewhere. Measured fracture orientations are strongly affected by biases imparted by the orientations of the pit walls, which, combined with a small data set, make identification of potential preferred orientations dlfflcult. The most prominent fracture orientations observed in Pit 39, about E-W and N20E, are often not well represented elsewhere on the Pajarito Plateau. Fracture fills contain smectite to about 3 m depth, and calcite and opal may occur at all depths, principally associated with roots or root fossils (rhizoliths). Roots of pifion pine extend in fractures to the bottom of the pit along the north side, perhaps indicating a zone of preferred infiltration of water. Finely powdered tuff with clay-sized particles occurs within a number of fractures and may record abrasive disaggregation associated with small amounts of displacement on minor local faults.
Date: December 1, 1998
Creator: Vaniman, David T. & Reneau, Steven L.
Partner: UNT Libraries Government Documents Department

Deep borehole disposition of surplus fissile materials-The site selection process

Description: One option for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology exists to immediately begin the design of this means of disposition and there are many attractive sites available within the conterminous US. The borehole system utilizes mainly natural barriers to preven migration of Pu and U to the Earth`s surface. Careful site selection ensures favorable geologic conditions that provide natural long-lived migration barriers; they include deep, extremely stable rock formations, strongly reducing brines that exhibit increasing salinity with depth, and most importantly, demonstrated isolation or non-communication of deep fluids with the biosphere for millions of years. This isolation is the most important characteristic, with the other conditions mainly being those that will enhance the potential of locating and maintaining the isolated zones. Candidate sites will probably be located on the craton in very old Precambrian crystalline rocks, most likely the center of a granitic pluton. The sites will be located in tectonically stable areas with no recent volcanic or seismic activity, and situated away from tectonic features that might become active in the near geologic future.
Date: May 1, 1996
Creator: Heiken, G.; WoldeGabriel, G.; Morley, R. & Plannerer, H
Partner: UNT Libraries Government Documents Department

Long-length contaminated equipment burial containers fabrication process procedures

Description: These special process procedures cover the detailed step-by-step procedures required by the supplier who will manufacture the Long-Length Contaminated Equipment (LLCE) Burial Container design. Also included are detailed step-by-step procedures required by the disposal process for completion of the LLCE Burial Containers at Hanford.
Date: March 11, 1997
Creator: McCormick, W.A., Fluor Daniel Hanford
Partner: UNT Libraries Government Documents Department

INEEL Subsurface Disposal Area CERCLA-based Decision Analysis for Technology Screening and Remedial Alternative Evaluation

Description: A CERCLA-based decision analysis methodology for alternative evaluation and technology screening has been developed for application at the Idaho National Engineering and Environmental Laboratory WAG 7 OU13/14 Subsurface Disposal Area (SDA). Quantitative value functions derived from CERCLA balancing criteria in cooperation with State and Federal regulators are presented. A weighted criteria hierarchy is also summarized that relates individual value function numerical values to an overall score for a specific technology alternative.
Date: March 1, 2000
Creator: Parnell, G. S.; Kloeber, Jr. J.; Westphal, D; Fung, V. & Richardson, John Grant
Partner: UNT Libraries Government Documents Department

Terrestrial Carbon Sequestration - Science for Enhancement and Implementation

Description: It is time to re-evaluate all available options that might not be permanent yet have the potential to buy time, bridging to a future when new energy system technologies and a transformed energy infrastructure can fully address the climate challenge. Terrestrial sequestration is one option large enough to make a contribution in the coming decades using proven land management methods and with the possibility that new technologies could significantly enhance the opportunity. Here we review progress on key scientific, economic, and social issues; postulate the extent to which new technologies might significantly enhance terrestrial sequestration potential; and address remaining research needs.
Date: January 1, 2009
Creator: Post, Wilfred M; Amonette, James; Birdsey, Richard A.; Garten Jr, Charles T; Graham, Robin Lambert; Izaurralde, Dr. R. Cesar et al.
Partner: UNT Libraries Government Documents Department

CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration

Description: This report (which forms part of the requirements of the Statement of Work Task 0, subtask 0.4) records progress towards defining a detailed Work Plan for the CCP 30 days after contract initiation. It describes the studies planned, workscope development and technology provider bid evaluation status at that time. Business sensitive information is provided separately in Appendix 1. Contract negotiations are on hold pending award of patent waiver status to the CCP.
Date: January 10, 2002
Creator: Kerr, Helen
Partner: UNT Libraries Government Documents Department

Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO{sub 2} Capture and Sequestration

Description: This annual technical progress report summarizes the work accomplished during the first year of the program, January-December 2002, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The program has experienced significant delays due to several factors. The budget has also been significantly under spent. Based on recent technical successes significant future progress is expected. A number of concepts for integrating Oxygen Transport Membranes (OTMs) into boilers and process heaters to facilitate oxy-fuel combustion have been proposed. A detailed modeling plan has been proposed and early modeling work has focused on developing spreadsheet based models for quick engineering calculations. Combustion reactor laboratory scale evaluations efforts have been delayed due to the closing of Praxair's Tarrytown facility in December 2001. Experimental facilities and personnel have been relocated to Praxair's facility in Tonawanda. The facilities have recently been re-commissioned. Work with the OTM development task has also been delayed as early material selections were discarded. More recently, more promising OTM material compositions have been identified. Economic evaluation commenced. Information was acquired that quantified the attractiveness of the advanced oxygen-fired boiler. CO{sub 2} capture and compression are still estimated to be much less than $10/ton carbon.
Date: July 1, 2003
Creator: Thompson, David R.; Bool, Lawrence E. & Christie, G. Maxwell
Partner: UNT Libraries Government Documents Department

Quantitative assessment of microbiological contributions to corrosion of candidate nuclear waste-package materials

Description: The U.S. Department of Energy is contributing to the design of a potential nuclear-waste repository at Yucca Mountain, Nevada. A system to predict the contribution of Yucca Mountain (YM) bacteria to overall corrosion rates of candidate waste-package (WP) materials was designed and implemented. DC linear polarization resistance techniques were applied to candidate material coupons that had been inoculated with a mixture of YM-derived bacteria with potentially corrosive activities or left sterile. Inoculated bacteria caused a 5- to 6-fold increase in corrosion rate of carbon steel C1020 (to approximately 7Ð8mm/yr) and an almost 100-fold increase in corrosion rate of Alloy 400 (to approximately 1mm/yr). Microbiologically influenced corrosion (MIC) rates on more resistant materials (CRMs: Alloy 625, Type 304 Stainless Steel, and Alloy C22) were on the order of hundredths of micrometers per year (mm/yr). Bulk chemical and surfacial end-point analyses of spent media and coupon surfaces showed preferential dissolution of nickel from Alloy 400 coupons and depletion of chromium from CRMs after incubation with YM bacteria. Scanning electron microscopy (SEM) also showed greater damage to the Alloy 400 surface than that indicated by electrochemical detection methods.
Date: October 30, 1998
Creator: Horn, J.; Jones, D.; Lian, T. & Martin, S.
Partner: UNT Libraries Government Documents Department

Remediating the INEL`s buried mixed waste tanks

Description: The Idaho National Engineering Laboratory (INEL), formerly the National Reactor Testing Station (NRTS), encompasses 890 square miles and is located in southeast Idaho. In 1949, the United States Atomic Energy Commission, now the Department of Energy (DOE), established the NRTS as a site for the building and testing of nuclear facilities. Wastes generated during the building and testing of these nuclear facilities were disposed within the boundaries of the site. These mixed wastes, containing radionuclides and hazardous materials, were often stored in underground tanks for future disposal. The INEL has 11 buried mixed waste storage tanks regulated under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) ranging in size from 400 to 50,000 gallons. These tanks are constructed of either stainless or carbon steel and are located at 3 distinct geographic locations across the INEL. These tanks have been grouped based on their similarities in an effort to save money and decrease the time required to complete the necessary remediation. Environmental Restoration and Technology Development personnel are teaming in an effort to address the remediation problem systematically.
Date: February 28, 1996
Creator: Kuhns, D.J.; Matthern, G.E. & Reese, C.L.
Partner: UNT Libraries Government Documents Department

Spent nuclear fuel project quality assurance program plan

Description: This main body of this document describes how the requirements of 10 CFR 830.120 are met by the Spent Nuclear Fuel Project through implementation of WHC-SP-1131. Appendix A describes how the requirements of DOE/RW-0333P are met by the Spent Nuclear Fuel Project through implementation of specific policies, manuals, and procedures.
Date: May 9, 1997
Creator: Lacey, R. E.
Partner: UNT Libraries Government Documents Department

Parametric thermal evaluations of waste package emplacement

Description: Parametric thermal evaluations of spent nuclear fuel (SNF) waste packages (WPs) emplaced in the potential repository were performed to determine the impact of thermal loading, WP spacing, drift diameter, SNF aging, backfill, and relocation on the design of the Engineered Barrier System. Temperatures in the WP and near-field host rock are key to radionuclide containment, as they directly affect oxidation rates of the metal barriers and the ability of the rock to impede particle movement which must be demonstrated for a safe and licensable repository. Maximum allowable temperatures are based on material performance criteria and are specified as the following design goals for the WP/EBS design: SNF cladding 350{degrees}C, drift wall 200{degrees}C, and TSw3 rock 115{degrees}C.
Date: February 1, 1996
Creator: Bahney, R.H. III & Doering, T.W.
Partner: UNT Libraries Government Documents Department

Underground mining and deep geologic disposal - Two compatible and complementary activities

Description: Active and mature underground mining districts offer conditions favorable to deep geologic disposal because their geology is known in more detail, the feasibility of underground excavations has already been demonstrated, mining leaves distinctive footprints and records that alert subsequent generations to the anthropogenic alterations of the underground environment, and subsequent exploration and production proceeds with great care and accuracy to locate and generally to avoid old mine workings. Compatibility of mining with deep geologic waste disposal has been proven by decades of experience with safe storage and disposal in former mines and in the mined-out areas of still active mining operations. Mineral extraction around an intended repository reduces the incentive for future disturbance. Incidental features of mineral exploration and extraction such as lost circulation zones, allochthonous backfill, and permanent surface markers can deter future intrusion into a repository. Thus exploration and production of mineral resources should be compatible with, and complementary to, deep geologic waste disposal.
Date: December 31, 1995
Creator: Rempe, N.T.
Partner: UNT Libraries Government Documents Department

Evaluation of Neutron Poison Materials for DOE SNF Disposal Systems

Description: Aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors is being consolidated at the Savannah River Site (SRS) for ultimate disposal in the Mined Geologic Disposal System (MGDS). Most of the aluminum-based fuel material contains highly enriched uranium (HEU) (more than 20 percent 235U), which challenges the preclusion of criticality events for disposal periods exceeding 10,000 years. Recent criticality analyses have shown that the addition of neutron absorbing materials (poisons) is needed in waste packages containing DOE SNF canisters fully loaded with Al-SNF under flooded and degraded configurations to demonstrate compliance with the requirement that Keff less than 0.95. Compatibility of poison matrix materials and the Al-SNF, including their relative degradation rate and solubility, are important to maintain criticality control. An assessment of the viability of poison and matrix materials has been conducted, and an experimental corrosion program has been initiated to provide data on degradation rates of poison and matrix materials and Al-SNF materials under repository relevant vapor and aqueous environments. Initial testing includes Al6061, Type 316L stainless steel, and A516Gr55 in synthesized J-13 water vapor at 50 degrees C, 100 degrees C, and 200 degrees C and in condensate water vapor at 100 degrees C. Preliminary results are presented herein.
Date: September 1, 1998
Creator: Vinson, D.W.; Caskey, G.R. Jr. & Sindelar, R.L.
Partner: UNT Libraries Government Documents Department

Burial container subsidence load stress calculations

Description: This document captures the supporting analyses conducted to determine if the LLCE (Long-Length Contaminated Equipment) burial containers are structurally adequate under different trench closure scenarios. The LLCE is equipment that was inside tank farm tanks.
Date: November 1, 1995
Creator: Veith, E.M.
Partner: UNT Libraries Government Documents Department

Bentonite as a waste isolation pilot plant shaft sealing material

Description: Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.
Date: December 1, 1996
Creator: Daemen, J. & Ran, Chongwei
Partner: UNT Libraries Government Documents Department

Waste analysis plan for the low-level burial grounds. Revision 2

Description: The purpose of this waste analysis plan (WAP) is to document the waste 5 acceptance process, sampling methodologies, analytical techniques, and overall 6 processes that are undertaken for waste accepted for disposal at the Low-Level 7 Burial Grounds (LLBG), which are located in the 200 East and 200 West Areas of 8 the Hanford Facility, Richland, Washington. Because dangerous waste does not 9 include the source, special nuclear, and by-product material components of 10 mixed waste, radionuclides are not within the scope of this documentation. 11 The information on radionuclides is provided only for general knowledge. The 12 LLBG also receive low-level radioactive waste for disposal. The requirements 13 of this WAP are not applicable to this low-level waste.
Date: June 9, 1997
Creator: Pratt, D.A.
Partner: UNT Libraries Government Documents Department

In tank processing safety analysis program summary report. Revision 2

Description: The purpose of this summary report is to present results from the safety analysis work that was performed in support of the ``Seismic Safety Issue Resolution Program Plan`` for the In-Tank Processing (ITP) Facility. Results from this effort include estimates of the consequences that postulated earthquakes might introduce. For beyond evaluation based earthquake (EBE) events, best estimate values (e.g., waste tank volumes) are used rather than bounding values to analyze the consequences of such events. This is consistent with the probabilistic approach outlined in Attachment C of the program plan. Planned follow-on work will also involve best estimates of probabilities for soil liquefaction and differential settlement. These probabilities will be combined in an accident progression event tree (APET) model that is used to provide estimates of risk for beyond EBE seismic events.
Date: November 1, 1994
Creator: Radder, J.A.
Partner: UNT Libraries Government Documents Department

Waste analysis plan for the low-level burial grounds

Description: This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds (LLBG) which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.
Date: September 19, 1996
Creator: Haas, C.R.
Partner: UNT Libraries Government Documents Department