106 Matching Results

Search Results

Advanced search parameters have been applied.

Polymer filtration: A new technology for selective metals recovery

Description: Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.
Date: April 1, 1995
Creator: Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I. et al.
Partner: UNT Libraries Government Documents Department

Removal of Radioactive Cations and Anions from Polluted Water using Ligand-Modified Colloid-Enhanced Ultrafiltration

Description: The purpose of this project was to develop, optimize, and evaluate new separation methods for removal of hazardous (radionuclides and toxic non-radioactive contaminants) metal ions from either ground water or aqueous waste solutions produced during Decontamination and Decommissioning operations at DOE sites. Separation and concentration of the target ions will result in a substantial reduction in the volume of material requiring disposal or long-term storage. The target metal ions studied were uranium, thorium, lead, cadmium, and mercury along with chromium (as chromate). The methods tested use membrane ultrafiltration in conjunction with water-soluble polymers or surfactants with added metal-selective chelating agents. Laboratory scale tests showed removal of 99.0-99.9% of each metal tested in a single separation stage. The methods developed for selective removal of radionuclides (UO22+, Th4+) and toxic heavy metals (Pb2+, Cd2+, Hg2+) are applicable to two DOE focus areas; decontamination of sites and equipment, and in remediation of contaminated groundwater. Colloid-enhanced ultrafiltration methods have potential to be substantially less expensive than alternative methods and can result in less waste. Results of studies with varying solution composition (concentration, acidity) and filtration parameters (pressure, flow rate) have increased our understanding of the fundamental processes that control the metal ion separation and colloid recovery steps of the overall process. Further laboratory studies are needed to improve the ligand/colloid recovery step and field demonstration of the technology is needed to prove the applicability of the integrated process. A number of graduate students, post-doctoral associates, and research associates have received training and research experience in the areas of separation science, colloid chemistry, and metal ion coordination chemistry of radionuclides and toxic metals. These scientists, some with positions in industry and academia, have the necessary background to address problems related to environmental remediation and. management. The results of this research show the technical feasibility of ...
Date: December 17, 2001
Creator: Scamehorn, Dr. John F.; Taylor, Dr. Richard W. & Palmer, Dr. Cynthia E.
Partner: UNT Libraries Government Documents Department

Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils

Description: This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8 µm were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the ...
Date: October 19, 2012
Creator: \Huber, George W.; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R. & Badger, Phillip C.
Partner: UNT Libraries Government Documents Department

SUPPLEMENTAL ON-LINE MATERIAL, INFLUENCE OF pH ON PLUTONIUM DESORPTION/SOLUBILIZATION FROM SEDIMENT

Description: The oxidation state distribution of Pu in each sample for each reaction time was measured using a combined ultrafiltration and solvent extraction technique (1-4). First the oxidation state distribution of aqueous Pu is measured. Then the total system (solid and aqueous phase combined) Pu oxidation state distribution is measured by lowering the pH to leach Pu from the solid phase. For each reaction time, a 2.5-mL aliquot of the aqueous phase was removed and passed through a 12-nm filter (Microsep 30K MWCO Centrifugal Device; Pall Corporation, East Hills, NY). An aliquot of the filtrate was removed to determine the aqueous phase Pu concentration, and oxidation state distribution in the remaining filtrate was measured using the parallel solvent extraction technique discussed.
Date: March 8, 2006
Creator: Kaplan, D
Partner: UNT Libraries Government Documents Department

Development and Characterization of Gibbsite Component Simulant

Description: According to Bechtel National, Inc.’s (BNI’s) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, "Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes," simulants for boehmite, gibbsite, and filtration are to be developed so they can be used in subsequent bench and integrated testing of the leaching/filtration processes for the River Protection Project-Waste Treatment and Immobilization Plant (RPP-WTP). These simulants will then be used to demonstrate the leaching process and to help refine processing conditions that may impact safety basis considerations (Smith 2006). This report documents PNNL’s results of the gibbsite simulant development.
Date: January 29, 2009
Creator: Russell, Renee L.; Smith, Harry D.; Rinehart, Donald E. & Peterson, Reid A.
Partner: UNT Libraries Government Documents Department

FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

Description: Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Bovine serum albumin (BSA) is a well-studied model solute in membrane filtration known for its fouling and concentration polarization capabilities. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using BSA solution as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure.
Date: March 14, 2002
Creator: Ilias, Shamsuddin
Partner: UNT Libraries Government Documents Department

Chemical Characterization of Soluble Phosphorus Forms along a Hydrologic Flowpath of a Forested Stream Ecosystem

Description: The concentration and distribution of soluble phosphorus (P) forms were determined in compartments of a hydrologic pathway in a forested watershed (Walker Branch, Tennessee). Rainfall, throughfall, soil water, groundwater, stream water, and water from two sites in Melton Hill reservoir downstream of Walker Branch were examined for soluble reactive and total soluble phosphorus (SRP and TSP). Soluble unreactive P (SUP) was determined from their difference. An increase of TSP from rainfall to throughfall indicated leaching or wash off of P from the canopy. SRP and SUP decreased markedly as water percolated through the soil, suggesting biological uptake and/or geochemical adsorption of phosphate groups on soil particles. Changes in soluble P. concentrations within the stream channel supported previous evidence for biological control of P dynamics in Walker Branch. Overall, SUP (an estimate of soluble organic P) constituted a significant fraction of the total soluble P present in each compartment of the flowpath. An analytical technique using high-performance liquid chromatography (HPLC) to separate the inositol phosphates (IP's) was developed and used in characterizing organic P fractions of natural systems. Commercial orthophosphate, inositol monophosphate (IMP), and inositol hexaphosphate (IHP) were adequately separated from each other on Aminex A-27 resin using a sodium chloride/tetrasodium EDTA gradient elution. The technique was used to separate an enzyme hydrolysate mixture of IP's into five components. IHP was separated from PO{sub 4} and IMP in a wheat bran extract using the HPLC method. Alkaline bromination was used to extract IP's from a Walker Branch soil sample and HPLC was used to examine the extract; at least three IP peaks were recognized. Using the HPLC technique, an attempt was made to detect the presence of IP's in a Walker Branch groundwater sample concentration by ultrafiltration. The concentration process was unsuccessful possibly due to filtration membrane leakage, so no peaks ...
Date: January 1, 1999
Creator: Segars, J.E.
Partner: UNT Libraries Government Documents Department

Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

Description: The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented.
Date: December 31, 1997
Creator: Smith, B.F.; Robison, T.W. & Jarvinen, G.D.
Partner: UNT Libraries Government Documents Department

Fundamental studies of polymer filtration

Description: This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were (1) to develop an enhanced fundamental understanding of the coordination chemistry of hazardous-metal-ion complexation with water-soluble metal-binding polymers, and (2) to exploit this knowledge to develop improved separations for analytical methods, metals processing, and waste treatment. We investigated features of water-soluble metal-binding polymers that affect their binding constants and selectivity for selected transition metal ions. We evaluated backbone polymers using light scattering and ultrafiltration techniques to determine the effect of pH and ionic strength on the molecular volume of the polymers. The backbone polymers were incrementally functionalized with a metal-binding ligand. A procedure and analytical method to determine the absolute level of functionalization was developed and the results correlated with the elemental analysis, viscosity, and molecular size.
Date: December 31, 1998
Creator: Smith, B.F.; Lu, M.T.; Robison, T.W.; Rogers, Y.C. & Wilson, K.V.
Partner: UNT Libraries Government Documents Department

Polymer filtration systems for dilute metal ion recovery

Description: Scientists at Los Alamos National Laboratory have developed a metal recovery system that meets the global treatment demands for all kinds of industrial and metal-processing streams. The Polymer Filtration (PF) System--a process that is easily operated and robust--offers metal-finishing businesses a convenient and inexpensive way to recover and recycle metal ions in-house, thus reducing materials costs, waste removal costs, and industrial liability. As a valuable economic and environmental asset, the PF System has been named a winner of a 1995 R and D 100 Award. These awards are presented annually by R and D Magazine to the one hundred most significant technical innovations of the year. The PF System is based on the use of water-soluble metal-binding polymers and on advanced ultrafiltration membranes. Customers for this technology will receive new soluble polymers, especially formulated for their waste stream, and the complete PF processing unit: a reaction reservoir, pumps, plumbing, controls, and the advanced ultrafiltration membranes, all in a skid mounted frame. Metal-bearing waste water is treated in the reaction reservoir, where the polymer binds with the metal ions under balanced acid/base conditions. The reservoir fluid is then pumped through the ultrafiltration system--a cartridge packed with ultrafiltration membranes shaped in hollow fibers. As the fluid travels inside the fiber, water and other small molecules--simple salts such as calcium and sodium, for example--pass through the porous membrane walls of the fibers and are discharged through the outlet as permeate. The polymer-bound metal, which is too large to pass through the pores, is both purified and concentrated inside the hollow fibers and is returned to the fluid reservoir for further waste water treatment.
Date: December 1, 1998
Creator: Smith, B.F.; Robison, T.W. & Jarvinen, G.D.
Partner: UNT Libraries Government Documents Department

Treatment and recycle of high explosive contaminated water

Description: A polysulfone ultrafilter membrane having a 0.04-{micro}m pore opening has been used to filter high explosive contaminated water. The water is being recycled for the coolant used during the machining of high explosive billets. High explosive contaminated wastewater is generated from the machining of high explosives at Pantex Plant. The water is used as the coolant during the machining operation. Typically, the water flow rate is from 2 to 3 gallons per minute. The water must be tempered to about room temperature so that it does not affect the dimensions of the explosive piece being machined. In normal operations, the wastewater and cuttings are allowed to flow to a centralized collection system. The solid explosives are separated from the water using a filtration and recycle system. The wastewater is collected in an air agitated receiving tank or sump. It is pumped from the sump to a settling cone where the solid particles are decanted off of the bottom. The overflow from the cone is collected in another tank and then pumped through two cyclone separators operated in series. This water is also collected in a holding tank prior to final filtration through a 25-{micro}m filter. The effluent from the particle filter flows through two activated carbon filters operated in series prior to being discharged to a drainage ditch. This results in an average discharge of about 2,000 gallons per operating day from Building 11-50.
Date: September 1, 1994
Creator: Locke, J.G.
Partner: UNT Libraries Government Documents Department

RPP-WTP Slurry Wear Evaluation: Slurry Abrasivity

Description: This report deals with the task of evaluating wear in the cross-flow ultrafiltration system and specifically the need to define a representative slurry in order to obtain prototypic wear rates. The filtration system will treat many different wastes, but it is not practical to run a test for each one. This is especially true when considering that the planned period for testing is 2000 hours long and procurement of appropriate simulants is costly. Considering time and cost, one waste stream needs to be chosen to perform the wear test.
Date: June 3, 2002
Creator: Duignan, M.R.
Partner: UNT Libraries Government Documents Department

Arsenic Removal Technologies and the Effect of Source Water Quality on Performance

Description: Arsenic removal technologies that are effective at the tens of ppb level include coagulation, followed by settling/microfiltration, ion exchange by mineral surfaces,and pressure-driven membrane processes (reverse osmosis, nanofiltration and ultrafiltration). This report describes the fundamental mechanisms of operation of the arsenic removal systems and addresses the critical issues of arsenic speciation, source water quality on the performance of the arsenic removal systems and costs associated with the different treatment technology categories.
Date: July 1, 2002
Creator: KHANDAKER, NADIM R. & BRADY, PATRICK V.
Partner: UNT Libraries Government Documents Department

Filtration of a Hanford AN-104 Sample

Description: The Savannah River Technology Center (SRTC) conducted ultrafiltration tests with samples from the Hanford Site's 241-AN-104 tank. The test objectives were to measure filter flux during dewatering and the removal of soluble species during washing. The filtration tests were conducted with the Cells Unit Filter (CUF) currently installed in Cell 16 of the SRTC High Activity Caves. Following filtration, personnel performed inhibited water washing to remove soluble species. Because of the limited volume of concentrated slurry, the washing was performed with a volumetric flask rather than a crossflow filter. Following the washing, personnel chemically cleaned the filter with 1 M nitric acid and periodically measured the clean water flux.
Date: April 19, 2004
Creator: Poirier, Michael
Partner: UNT Libraries Government Documents Department

Research and Development to Overcome Fouling of Membranes. First Annual Report, October 1, 1989--October 31, 1990

Description: During this first year of the program, we have successfully accomplished the main objective of demonstrating the feasibility of using piezoelectrically assisted ultrafiltration to reduce membrane fouling and enhance the flux through ultrafiltration membranes. A preliminary economic evaluation, accounting for the power consumption of the piezoelectric driver and the extent of permeate flow rate enhancement, has also shown that piezoelectrically assisted ultrafiltration is cost effective and economically competitive with traditional separation processes. Piezoelectric transducers, such as a piezoelectric lead zirconate titanate (PZT) disc or a piezoelectric horn, driven by moderate power, significantly enhance the permeate flux on fouled membranes, presumably because they promote local turbulence. Several experiments were conducted on polysulfone and regenerated cellulose UF membranes fouled during filtration of model feed solutions. Solutions of poly(ethylene glycol) and of high-molecular weight dextran were used as models. We found that we could significantly increase the permeate flux by periodically driving the piezoelectric transducer, horn, or PZT disc, by application of moderate power over short periods of time, from 20 to 90 seconds. Enhancements as high as a factor of 8 were recorded with a few seconds, and enhanced permeate fluxes were maintained over a prolonged period (up to 3 hours). The prolonged flux enhancement makes it feasible to drive the piezoelectric transducer intermittently, thereby reducing the power consumption of the piezoelectric driver.
Date: June 1, 1992
Creator: Narang, S. C.; Sharma, S. K.; Ventura, S. C.; Roberts, D. L. & Ahner, N.
Partner: UNT Libraries Government Documents Department

Cross-flow Ultrafiltration Scaling Considerations

Description: One legacy of the nuclear age is radioactive waste and it must be stabilized to be stored in a safe manner. An important part of the stabilization process is the separation of radioactive solids from the liquid wastes by cross-flow ultrafiltration. The performance of this technology with the wastes to be treated was unknown and, therefore, had to be obtained. However, before beginning a filter study the question of experimental scale had to be addressed. Of course, carrying out experiments using full-size equipment is always ideal, but rarely practical when dealing with plant size processes. Flow loops that will handle millions of liters of slurries, which are either highly caustic or acidic, with flow rates of 10,000 lpm make full-scale tests prohibitively expensive. Moreover, when the slurries happen to be radioactive such work is also very dangerous. All of these considerations lend themselves to investigations at smaller scales and in many situations can be treated with computational analyses. Unfortunately, as scale is reduced it becomes harder to provide prototypic results and the two and three phase multi-component mixtures challenge accurate computational results. To obtain accurate and representative filter results the use of two scales were chosen: (1) Small-scale--would allow the testing with actual radioactive waste samples and compare results with simulated wastes that were not radioactive. For this scale the feed tank held 6 liters of waste and it had a single cross-flow filter tube 0.61 m long. (2) Pilot-scale--would be restricted to use simulated non-radioactive wastes. At this larger scale the feed tank held 120 liters of waste and the filter unit was prototypic to the planned plant facility in pore size (0.1 micron), length (2.29 m), diameter (0.0127 m inside and 0.0159 m outside diameter), and being multi-tubed. The small-scale apparatus is convenient, easy to use, and can ...
Date: April 10, 2006
Creator: Duignan, M
Partner: UNT Libraries Government Documents Department

Emerging technologies and approaches to minimize discharges into Lake Michigan, phase 2 module 4 report.

Description: The Great Lakes Initiative (GLI) established the new water quality-based discharge criteria for mercury (Hg), thereby increasing the need for many municipal and industrial wastewater treatment plants in the region to lower the mercury in their effluents. Information on deployable technologies to satisfy these requirements for industrial and municipal dischargers in the Great lakes region is scarce. Therefore, BP funded Purdue University Calumet and Argonne to identify deployable Hg removal technologies to meet the GLI discharge criterion at its Whiting Refinery in Indiana. The joint PUC/Argonne project was divided into 2 phases. Results from Phase I and Phase II Modules 1-3 have been previously reported. This report summarizes the work done in Phase 3 Module 4, which consisted of the pilot scale testing of Hg removal technologies previously selected in Module 3. The pilot testing was an Argonne/PUC jointly directed project that was hosted at and funded by the BP refinery in Whiting, IN. As two organizations were involved in data analysis and interpretation, this report combines two independent sets of evaluations of the testing that was done, prepared respectively by Argonne and Purdue. Each organization retains sole responsibility for its respective analysis conclusions and recommendations. Based on Module 3 bench testing with pre-Effluent To Lake (pre-ETL) and clarifier effluent (CE) samples from the Whiting refinery, three different technologies were chosen for pilot testing: (1) Ultrafiltration (using GE ZeeWeed(reg sign) Technology, 0.04 {mu}m pore size and made up of PVDF) for particulate mercury removal; (2) Adsorption using Mersorb(reg sign) LW, a sulfur-impregnated activated carbon, for dissolved mercury removal if present and (3) The Blue PRO(reg sign) reactive filtration process for both particulate and dissolved (if present) mercury removal. The ultrafiltration and the Blue PRO(reg sign) reactive filtration pilot studies were done simultaneously at the BP Whiting refinery using a slipstream ...
Date: April 19, 2012
Creator: Negri, M.C.; Gillenwater, P.; Urgun-Demirtas, M.; Nnanna, G.; Yu, J.; Jannotta, I, (Energy Systems) et al.
Partner: UNT Libraries Government Documents Department

EFRT M-12 Issue Resolution: Comparison of Filter Performance at PEP and CUF Scale

Description: Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, Undemonstrated Leaching Processes. The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed-preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of ...
Date: August 13, 2009
Creator: Daniel, Richard C.; Billing, Justin M.; Bontha, Jagannadha R.; Brown, Christopher F.; Eslinger, Paul W.; Hanson, Brady D. et al.
Partner: UNT Libraries Government Documents Department

EFRT M-12 Issue Resolution: Solids Washing

Description: Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. Two operating scenarios were evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-VSL-T01A/B ultrafiltration feed vessels, identified as Integrated Test A. The second scenario has caustic leaching conducted in the UFP-VSL-T02A ultrafiltration feed preparation vessel, identified as Integrated Test B. Washing operations in PEP Integrated Tests A and B were conducted successfully as per the approved run sheets. However, various minor instrumental problems occurred, and some of the process conditions specified in the run sheet were not met during the wash operations, such as filter-loop flow-rate targets not being met. Five analytes were selected based on full solubility and monitored in the post-caustic-leach wash as successful indicators of washing efficiency. These were aluminum, sulfate, nitrate, nitrite, and free hydroxide. Other analytes, including sodium, oxalate, phosphate, and total dissolved solids, showed indications of changing solubility; therefore, they were unsuitable for monitoring washing efficiency. In the post-oxidative-leach wash, two analytes with full solubility were selected as suitable indicators of washing efficiency. These were chromium and oxalate. Other analytes, including sodium, manganese, nitrate, and total dissolved solids, showed indications of changing solubility; therefore, they were unsuitable for monitoring washing efficiency. An ...
Date: August 14, 2009
Creator: Baldwin, David L.; Schonewill, Philip P.; Toth, James J.; Huckaby, James L.; Eslinger, Paul W.; Hanson, Brady D. et al.
Partner: UNT Libraries Government Documents Department

EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

Description: Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to dissolve solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct steam injection to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of ...
Date: August 14, 2009
Creator: Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L. et al.
Partner: UNT Libraries Government Documents Department

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

Description: Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.
Date: September 29, 2004
Creator: Burnett, David B.
Partner: UNT Libraries Government Documents Department

Laboratory Tests on Post-Filtration Precipitation in the WTP Pretreatment Process

Description: Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan (Barnes et al. 2006). The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF).
Date: November 20, 2009
Creator: Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E. & Crum, Jarrod V.
Partner: UNT Libraries Government Documents Department