3 Matching Results

Search Results

Advanced search parameters have been applied.

Implementation of Wireless Communications on Gnu Radio

Description: This thesis investigates the design and implementation of wireless communication system over the GNU Radio. Wireless applications are on the rise with advent of new devices, therefore there is a need to transfer the hardware complexity to software. This development enables software radio function with minimum hardware dependency. the purpose of this thesis is to design a system that will transmit compressed data via Software Defined Radio (SDR). Some parameters such as modulation scheme, bit rate can be changed to achieve the desired quality of service. in this thesis GNU (GNU’s not unix) radio is used while the hardware structure is Universal Software Radio Peripheral (USRP). in order to accomplish the goal, a compression technique called H264 (MPEG_4) encoding is applied for converting data into compressed format. the encoder was implemented in C++ to get compressed data. After encoding, the transmitter reads the compressed data and starts modulation. After modulation, the transmitter put the packets into USRP and sends it to the receiver. Once packets are received they are demodulated and then decoded to recover the original data.
Date: May 2012
Creator: Njoki, Simon M.
Partner: UNT Libraries

A Bidirectional Two-Hop Relay Network Using GNU Radio and USRP

Description: A bidirectional two-hop relay network with decode-and-forward strategy is implemented using GNU Radio (software) and several USRPs (hardware) on Ubuntu (operating system). The relay communication system is comprised of three nodes; Base Station A, Base Station B, and Relay Station (the intermediate node). During the first time slot, Base Station A and Base Station B will each transmit data, e.g., a JPEG file, to Relay Station using DBPSK modulation and FDMA. For the final time slot, Relay Station will perform a bitwise XOR of the data, and transmit the XORed data to Base Station A and Base Station B, where the received data is decoded by performing another XOR operation with the original data.
Date: August 2011
Creator: Le, Johnny
Partner: UNT Libraries

A Cognitive Radio Application through Opportunistic Spectrum Access

Description: In wireless communication systems, one of the most important resources being focused on all the researchers is spectrum. A cognitive radio (CR) system is one of the efficient ways to access the radio spectrum opportunistically, and efficiently use the available underutilized licensed spectrum. Spectrum utilization can be significantly enhanced by developing more applications with adopting CR technology. CR systems are implemented using a radio technology called software-defined radios (SDR). SDR provides a flexible and cost-effective solution to fulfil the requirements of end users. We can see a lot of innovations in Internet of Things (IoT) and increasing number of smart devices. Hence, a CR system application involving an IoT device is studied in this thesis. Opportunistic spectrum access involves two tasks of CR system: spectrum sensing and dynamic spectrum access. The functioning of the CR system is rest upon the spectrum sensing. There are different spectrum sensing techniques used to detect the spectrum holes and a few of them are discussed here in this thesis. The simplest and easiest to implement energy detection spectrum sensing technique is used here to implement the CR system. Dynamic spectrum access involves different models and strategies to access the spectrum. Amongst the available models, an interweave model is more challenging and is used in this thesis. Interweave model needs effective spectrum sensing before accessing the spectrum opportunistically. The system designed and simulated in this thesis is capable of transmitting an output from an IoT device using USRP and GNU radio through accessing the radio spectrum opportunistically.
Date: May 2017
Creator: Bhadane, Kunal Ashok Ashok
Partner: UNT Libraries