114 Matching Results

Search Results

Advanced search parameters have been applied.

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

Description: This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.
Date: February 1, 2010
Creator: Grant, R. P.; Crane, P. J.; Butler, S. & Henry, M. A.
Partner: UNT Libraries Government Documents Department

Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

Description: This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.
Date: September 1, 2013
Creator: Adams, B. R.; Grant, R. P.; Smith, P. R. & Weisgerber, J. L.
Partner: UNT Libraries Government Documents Department

Contamination Control During In Situ Jet Grouting for Application in a Buried Transuranic Waste Site

Description: Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) have developed means of contamination control associated with jet-grouting buried radioactive mixed waste sites. Finely divided plutonium/americium oxide particulate can escape as the drill stem of the jet-grouting apparatus exits a waste deposit in preparation for insertion in another injection hole. In studying various options for controlling this potential contamination, engineers found that an elaborate glovebox/drill string shroud system prevents contaminants from spreading. Researchers jet-grouted a pit with nonradioactive tracers to simulate the movement of plutonium fines during an actual application. Data from the testing indicate that the grout immobilizes the tracer material by locking it up in particles large enough to resist aerosolization.
Date: February 1, 2003
Creator: Loomis, Guy George & Jessmore, James Joseph
Partner: UNT Libraries Government Documents Department

Neutronic Assessment of Transmutation Target Compositions in Heterogeneous Sodium Fast Reactor Geometries

Description: The sodium fast reactor is under consideration for consuming the transuranic waste in the spent nuclear fuel generated by light water reactors. This work is concerned with specialized target assemblies for an oxide-fueled sodium fast reactor that are designed exclusively for burning the americium and higher mass actinide component of light water reactor spent nuclear fuel (SNF). The associated gamma and neutron radioactivity, as well as thermal heat, associated with decay of these actinides may significantly complicate fuel handling and fabrication of recycled fast reactor fuel. The objective of using targets is to isolate in a smaller number of assemblies these concentrations of higher actinides, thus reducing the volume of fuel having more rigorous handling requirements or a more complicated fabrication process. This is in contrast to homogeneous recycle where all recycled actinides are distributed among all fuel assemblies. Several heterogeneous core geometries were evaluated to determine the fewest target assemblies required to burn these actinides without violating a set of established fuel performance criteria. The DIF3D/REBUS code from Argonne National Laboratory was used to perform the core physics and accompanying fuel cycle calculations in support of this work. Using the REBUS code, each core design was evaluated at the equilibrium cycle condition.
Date: February 1, 2008
Creator: Bays, Samuel E.; Ferrer, Rodolfo M.; Pope, Michael A.; Forget, Benoit & Asgari, Mehdi
Partner: UNT Libraries Government Documents Department

Fusion transmutation of waste: design and analysis of the in-zinerator concept.

Description: Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.
Date: November 1, 2006
Creator: Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A&M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA) et al.
Partner: UNT Libraries Government Documents Department

CH Packaging Program Guidance

Description: The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.
Date: February 28, 2005
Creator: Westinghouse TRU Solutions LLC
Partner: UNT Libraries Government Documents Department

Implementing Systems Engineering on a CERCLA Project

Description: The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), enacted in 1980, provides a regulatory and legal mechanism to reduce risks from prior disposal of hazardous and toxic chemicals. Regulations, Standards, and Guidelines have been published to further define the CERCLA Process. The OU 7-10 Staged Interim Action Project at the Idaho National Engineering and Environmental Laboratory (INEEL) is a CERCLA project working to remediate the pre-1970 disposal pit in which transuranic materials have been disposed. This paper analyzes the CERCLA process from a systems engineering perspective and describes how systems engineering is implemented on this project.
Date: June 1, 1999
Creator: Beitel, George Alois
Partner: UNT Libraries Government Documents Department

Expanding the Allowable TRUPACT-II Payload

Description: The partnership between the Carlsbad Field Office (CBFO) and the TRU and Mixed Waste Focus Area (TMFA) was rewarded when several long-term projects came to fruition. The Nuclear Regulatory Commission (NRC) removed some of the conservatism in the TRUPACT-II Safety Analysis Report for Packaging (SARP) with their approval of Revision 19. The SARP strictly limits the payload constituents to ensure that hydrogen gas and other flammable volatile organic compounds (VOCs) don't build up to flammable/explosive levels while the transuranic (TRU) waste is sealed in the container during shipment. The CBFO/TMFA development program was based on laboratory experiments with surrogate waste materials, real waste experiments, and theoretical modeling that were used to justify payload expansion. Future work to expand the shipping envelope of the TRUPACT-II focuses on increasing the throughput through the waste certification process and reducing the waste operations costs by removing the need for a repackaging and/or treatment capability or reducing the size of the needed repackaging/treatment capability.
Date: August 1, 2002
Creator: St Michel, Whitney Dorothea & Lott, Sheila
Partner: UNT Libraries Government Documents Department

Automated Sorting of Transuranic Waste

Description: The HANDSS-55 Transuranic Waste Sorting Module is designed to sort out items found in 55-gallon drums of waste as determined by an operator. Innovative imaging techniques coupled with fast linear motor-based motion systems and a flexible end-effector system allow the operator to remove items from the waste stream by a touch of the finger. When all desired items are removed from the waste stream, the remaining objects are automatically moved to a repackaging port for removal from the glovebox/cell. The Transuranic Waste Sorting Module consists of 1) a high accuracy XYZ Stereo Measurement and Imaging system, 2) a vibrating/tilting sorting table, 3) an XY Deployment System, 4) a ZR Deployment System, 5) several user-selectable end-effectors, 6) a waste bag opening system, 7) control and instrumentation, 8) a noncompliant waste load-out area, and 9) a Human/Machine Interface (HMI). The system is modular in design to accommodate database management tools, additional load-out ports, and other enhancements. Manually sorting the contents of a 55-gallon drum takes about one day per drum. The HANDSS-55 Waste Sorting Module is designed to significantly increase the throughput of this sorting process by automating those functions that are strenuous and tiresome for an operator to perform. The Waste Sorting Module uses the inherent ability of an operator to identify the items that need to be segregated from the waste stream and then, under computer control, picks that item out of the waste and deposits it in the appropriate location. The operator identifies the object by locating the visual image on a large color display and touches the image on the display with his finger. The computer then determines the location of the object, and performing a highspeed image analysis determines its size and orientation, so that a robotic gripper can be deployed to pick it up. Following operator ...
Date: March 1, 2001
Creator: Shurtliff, Rodney Marvin
Partner: UNT Libraries Government Documents Department

Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

Description: In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.
Date: July 1, 2002
Creator: Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K & West, William Howard
Partner: UNT Libraries Government Documents Department

CH Packaging Program Guidance

Description: The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the pplication." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to ...
Date: September 11, 2008
Creator: None, None
Partner: UNT Libraries Government Documents Department

CH Packaging Program Guidance

Description: The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package TransporterModel II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant| (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations(CFR) §71.8. Any time a user suspects or has indications that the conditions ofapproval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must ...
Date: April 25, 2006
Creator: None, None
Partner: UNT Libraries Government Documents Department

CH Packaging Program Guidance

Description: The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. ...
Date: December 13, 2007
Creator: None, None
Partner: UNT Libraries Government Documents Department

Problems Found Using a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

Description: An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion of anthropogenic activity estimates with the relative bias being small compared to the dispersion, indicating that the system would not give false positive indications for an appropriately set decision level. By also measuring environmental air sample filters simultaneously with electroplated alpha filters, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations from calibrated values indicating that the system would give false negative indications. Use of the current algorithm is, therefore, not recommended for general assay applications. Use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve-fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha activities on air sample filters (not due to radon progeny) around the 200 disintegrations per minute level.
Date: April 1, 2008
Creator: Hayes, Robert
Partner: UNT Libraries Government Documents Department

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

Description: The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to ...
Date: August 3, 2005
Creator: Office, Carlsbad Field
Partner: UNT Libraries Government Documents Department

Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

Description: In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis ...
Date: July 16, 2009
Creator: Shott, Gregory J. & Yucel, Vefa
Partner: UNT Libraries Government Documents Department

Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

Description: A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have ...
Date: August 20, 2009
Creator: Cantrell, Kirk J.
Partner: UNT Libraries Government Documents Department

Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

Description: An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.
Date: January 23, 2009
Creator: Hayes, Robert
Partner: UNT Libraries Government Documents Department

High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

Description: A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.
Date: October 1, 2010
Creator: Tsvetkov, Pavel Valeryevich (Texas A&M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A&M University, College Station, TX) & Rochau, Gary Eugene
Partner: UNT Libraries Government Documents Department

RH-TRU Waste Content Codes (RH TRUCON)

Description: The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of ...
Date: May 1, 2007
Creator: Solutions, Washington TRU
Partner: UNT Libraries Government Documents Department