6 Matching Results

Search Results

Advanced search parameters have been applied.

Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

Description: Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developed an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In addition to prospective analysis for standards and certification, urban form modeling can also be useful in calculating or verifying ex ...
Date: December 15, 2010
Creator: Aden, Nathaniel; Qin, Yining & Fridley, David
Partner: UNT Libraries Government Documents Department

Next Generation Nuclear Plant Methods Technical Program Plan

Description: One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.
Date: December 1, 2010
Creator: Schultz, Richard R.; Ougouag, Abderrafi M.; Nigg, David W.; Gougar, Hans D.; Johnson, Richard W.; Terry, William K. et al.
Partner: UNT Libraries Government Documents Department

Advanced atom chips with two metal layers.

Description: A design concept, device layout, and monolithic microfabrication processing sequence have been developed for a dual-metal layer atom chip for next-generation positional control of ultracold ensembles of trapped atoms. Atom chips are intriguing systems for precision metrology and quantum information that use ultracold atoms on microfabricated chips. Using magnetic fields generated by current carrying wires, atoms are confined via the Zeeman effect and controllably positioned near optical resonators. Current state-of-the-art atom chips are single-layer or hybrid-integrated multilayer devices with limited flexibility and repeatability. An attractive feature of multi-level metallization is the ability to construct more complicated conductor patterns and thereby realize the complex magnetic potentials necessary for the more precise spatial and temporal control of atoms that is required. Here, we have designed a true, monolithically integrated, planarized, multi-metal-layer atom chip for demonstrating crossed-wire conductor patterns that trap and controllably transport atoms across the chip surface to targets of interest.
Date: December 1, 2010
Creator: Stevens, James E.; Blain, Matthew Glenn; Benito, Francisco M. & Biedermann, Grant
Partner: UNT Libraries Government Documents Department

H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

Description: The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs, and pipeline delivery specifications.
Date: December 1, 2010
Creator: Saur, G. & Jalalzadeh, A.
Partner: UNT Libraries Government Documents Department

Progress Report, December 2010: Improved Site Characterization And Storage Prediction Through Stochastic Inversion Of Time-Lapse Geophysical And Geochemical Data

Description: Over the last project six months, our project activities have concentrated on three areas: (1) performing a stochastic inversion of pattern 16 seismic data to deduce reservoir permeability, (2) development of the geochemical inversion strategy and implementation of associated software, and (3) completing the software implementation of TProGS and the geostatistical analysis that provides the information needed when using the software to produce realizations of the Midale reservoir. The report partially the following deliverables: D2: Model development: MCMC tool (synthetic fluid chemistry data); deliverable completed. D4: Model development/verification: MCMC tool (TProGS, field seismic/chemistry data) work product; deliverable requirements partially fulfilled. D5: Field-based single-pattern simulations work product; deliverable requirements partially fulfilled. When completed, our completed stochastic inversion tool will explicitly integrate reactive transport modeling, facies-based geostatistical methods, and a novel stochastic inversion technique to optimize agreement between observed and predicted storage performance. Such optimization will be accomplished through stepwise refinement of: (1) the reservoir model - principally its permeability magnitude and heterogeneity - and (2) geochemical parameters - primarily key mineral volume fractions and kinetic data. We anticipate that these refinements will facilitate significantly improved history matching and forward modeling of CO{sub 2} storage. Our tool uses the Markov Chain Monte Carlo (MCMC) methodology. Deliverable D1, previously submitted as a report titled ''Development of a Stochastic Inversion Tool To Optimize Agreement Between The Observed And Predicted Seismic Response To CO{sub 2} Injection/Migration in the Weyburn-Midale Project'' (Ramirez et al., 2009), described the stochastic inversion approach that will identify reservoir models that optimize agreement between the observed and predicted seismic response. The software that implements this approach has been completed, tested, and used to process seismic data from pattern 16. A previously submitted report titled ''Model verification: synthetic single pattern simulations using seismic reflection data'', Ramirez et al. 2010, partially fulfilled deliverable ...
Date: December 17, 2010
Creator: Ramirez, A; Mcnab, W; Carle, S; Hao, Y; White, D & Johnson, J
Partner: UNT Libraries Government Documents Department

Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

Description: This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.
Date: December 1, 2010
Creator: Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P. et al.
Partner: UNT Libraries Government Documents Department