657 Matching Results

Search Results

Advanced search parameters have been applied.

Domain wall dynamics in a spin-reorientation transition system Au/Co/Au

Description: We report measurements of domain wall dynamics in an ultrathin Au/Co/Au system that exhibits a spin reorientation phase transition as a function of temperature.The domain walls exhibit cooperative motion throughout the temperature range of 150 - 300 K. The decay times were found to exhibit a maximum at the transition temperature. The slowdown has been explained as due to formation of a double well in the energy landscape by the different competing interactions. Our results show that the complex, slow dynamics can provide a more fundamental understanding of magnetic phase transitions.
Date: May 14, 2009
Creator: Roy, Sujoy; Seu, Keoki; Turner, Joshua J.; Park, Sungkyun; Kevan, Steve & Falco, Charles M.
Partner: UNT Libraries Government Documents Department


Description: A possible phase transition in liquid He{sup 3} has been investigated theoretically by generalizing the Bardeen, Cooper, and Schrieffer equations for the transition temperature in the manner suggested by Cooper, Mills, and Sessler. The equations are transformed into a form suitable for numerical solution and an expression is given for the transition temperature at which liquid He{sup 3} will change to highly correlated phase. Following a suggestion of Hottelson, it is shown that the phase transition is a consequence of the interaction of particles in relative D-states. The predicted value of the transition temperature depends on the assumed form of the effective single-particle potential and the interaction between He{sup 3} atoms. The most important aspects of the single-particle potential are related to the thermodynamic properties of the liquid just above the transition temperature. Two choices of the two-particle interaction, oonstituent with experiments, yield a second-order transition at a temperature between approximately 0.01 K and 0.1 K. The highly correlated phase should exhibit enhanced fluidity.
Date: January 29, 1960
Creator: Emery, V.J. & Sessler, A.M.
Partner: UNT Libraries Government Documents Department


Description: As part of the characterization of various glovebox glove material from four vendors, the permeability of gas through each type as a function of temperature was determined and a discontinuity in the permeability with temperature was revealed. A series of tests to determine the viscoelastic properties of the glove materials as a function of temperature using Dynamic Mechanical Analysis (DMA) was initiated. The glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material. The glass transition temperatures of the gloves were -60 C for butyl, -30 C for polyurethane, -16 C Hypalon{reg_sign}, - 16 C for Viton{reg_sign}, and -24 C for polyurethane-Hypalon{reg_sign}. The glass transition was too complex for the butyl-Hypalon{reg_sign} and butyl-Viton{reg_sign} composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.
Date: February 29, 2012
Creator: Korinko, P.
Partner: UNT Libraries Government Documents Department

Possibility of MGB2 application to superconducting cavities

Description: A metallic superconductor, magnesium diboride (MgB{sub 2}), which has a transition temperature of {approx}39 K, was discovered in early 2001. Published data taken at 10 GHz demonstrate that the material has a surface resistance comparable to niobium. This paper discusses the possibility of MgB{sub 2} as compared to Nb and Nb{sub 3}Sn. Also, a possible method of fabricating a MgB{sub 2} cavity using the hot isostatic press (HIP) technique is proposed.
Date: January 1, 2002
Creator: Tajima, T. (Tsuyoshi)
Partner: UNT Libraries Government Documents Department

Paramagnetism and reentrant behavior in quasi-one-dimensional superconductors at high magnetic fields

Description: The thermodynamics of quasi-one-dimensional superconductors in the presence of large magnetic fields is studied. When the quantum effects of the magnetic field are taken into account, several reentrant superconducting phases persist at very high fields. In the last reentrant phase the free energy change, the specific heat jump and the excess magnetization are estimated near the critical temperature. In particular, the excess magnetization is found to be paramagnetic as opposed to diamagnetic in weak fields and its sign is controlled by the slope of H{sub c{sub 2}} (T). The authors further generalize this result to the entire phase diagram (including all quantum phases) and to different physical systems using general thermodynamic relations which show that the sign of the excess magnetization {Delta}M of the superconducting state near H{sub c{sub 2}}(T) follows dH{sub c{sub 2}}(T)/dT. These relations provide a scenario for the evolution of the sign of {Delta}M from weak fields to strong fields.
Date: February 1996
Creator: Sa de Melo, C. A. R.
Partner: UNT Libraries Government Documents Department

Effects of self-irradiation on local crystal structure and 5flocalization in PuCoGa5

Description: The 18.5 K superconductor PuCoGa{sub 5} has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.
Date: October 20, 2006
Creator: Booth, C.H.; Daniel, M.; Wilson, R.E.; Bauer, E.D.; Mitchell,J.N.; Moreno, N.O. et al.
Partner: UNT Libraries Government Documents Department

Discovery of plutonium-based superconductivity

Description: The discovery of superconductivity in single crystals of PuCoGa{sub 5} with transition temperature T{sub c}=18.5 K is discussed. The existing data lead to the speculation that the superconductivity in PuCoGa{sub 5} may be unconventional. In such a scenario the properties of PuCoGa{sub 5} would be intermediate between those of isostructural UCoGa{sub 5} and CeCoIn{sub 5}, more heavily studied f-electron materials.
Date: January 1, 2002
Creator: Sarrao, John L.,; Thompson, J. D. (Joe David); Moreno, N. O.; Morales, L. A. (Luis A.); Wastin, F. (Franck); Rebizant, J. et al.
Partner: UNT Libraries Government Documents Department

Element-specific study of the temperature dependent magnetization of Co-Mn-Sb thin films

Description: Magnetron sputtered thin Co-Mn-Sb films were investigated with respect to their element-specific magnetic properties. Stoichiometric Co{sub 1}Mn{sub 1}Sb{sub 1} crystallized in the C1{sub b} structure has been predicted to be half-metallic and is therefore of interest for spintronics applications. It should show a characteristic antiferromagnetic coupling of the Mn and Co magnetic moments and a transition temperature T{sub C} of about 480K. Although the observed transition temperature of our 20nm thick Co{sub 32.4}Mn{sub 33.7}Sb{sub 33.8}, Co{sub 37.7}Mn{sub 34.1}Sb{sub 28.2} and Co{sub 43.2}Mn{sub 32.6}Sb{sub 24.2} films is in quite good agreement with the expected value, we found a ferromagnetic coupling of the Mn and Co magnetic moments which indicates that the films do not crystallize in the C1{sub b} structure and are probably not fully spin-polarized. The ratio of the Co and Mn moments does not change up to the transition temperature and the temperature dependence of the magnetic moments can be well described by the mean field theory.
Date: September 30, 2008
Creator: Schmalhorst, J.; Ebke, D.; Meinert, M.; Thomas, A.; Reiss, G. & Arenholz, E.
Partner: UNT Libraries Government Documents Department

Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

Description: he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.
Date: May 26, 2007
Creator: Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T. et al.
Partner: UNT Libraries Government Documents Department

Synthesis and Magnetic, Thermal, and Electrical Measurements on Complex non-Cuprate Superconductors

Description: The project investigated superconductivity in non-cuprate materials with critical temperatures, T{sub c}, in excess of 20 K in order to understand the thermodynamics of several of these materials. The project is a cooperative effort between investigators at Southern University (SU), Louisiana State University (LSU), and Los Alamos National Laboratory (LANL). It involved synthesis of high quality samples, and subsequent detailed magnetic, thermal and electrical measurements on them. The project provided a PhD Thesis research experience and training for a graduate student, Ms. Robin Macaluso. High quality, single crystal samples were synthesized by Ms. Macaluso under the direction of one of the CO-PIS, John Sarao, during the summer while she was a visitor at LANL being supported by this grant. On these samples magnetic measurements were performed at SU, thermal and electrical measurements were made in the LSU Physics and Astronomy Department. The crystallographic properties were determined in the LSU Chemistry Department by Ms. Macaluso under the direction of her dissertation advisor, Dr. Julia Chan. Additional high field magnetic measurements on other samples were performed at the National High Magnetic Field Laboratory (NHMFL) both in Tallahassee and at LANL. These measurements involved another graduate student, Umit Alver, who used some of the measurements as part of his PhD dissertation in Physics at LSU.
Date: February 27, 2006
Creator: Henry, Laurence L
Partner: UNT Libraries Government Documents Department

Irreversible volume growth in polymer-bonded powder systems: effects of crystalline anisotropy, particle size distribution, and binder strength

Description: Pressed-powdered crystallites of intrinsically anisotropic materials have been shown to undergo irreversible volume expansion when subjected to repeated cycles of heating and cooling. We develop a coarse-grained (micron-scale) interaction Hamiltonian for this system and perform molecular dynamics simulations, which quantitatively reproduce the experimentally observed irreversible growth. The functional form and values of the interaction parameters at the coarse-grained level are motivated by our knowledge at the atomic/molecular scale, and allows a simple way to incorporate the effect of polymeric binder. We demonstrate that irreversible growth happens only in the presence of intrinsic crystalline anisotropy of the powder material, is mediated by particles much smaller than the average crystallite size, and can be significantly reduced in the presence of high-strength polymeric binder with elevated glass transition temperatures.
Date: August 22, 2007
Creator: Maiti, A; Gee, R H; Hoffman, D & Fried, L E
Partner: UNT Libraries Government Documents Department

Correlation of Structure and Function for CO2 Permeation in Polyphosphazene Membranes

Description: Polyphosphazenes are an intriguing class of polymers because molecular substitutions can be made onto the phosphorus and nitrogen backbone after polymerization. Chemical functionality is supplied through selection of pendant group. In general, regardless of pendant group, polyphosphazenes embody a high degree of thermal and chemical stability, although some pendant groups yield more stable polymers as compared to others. For example, many aryloxyphosphazene formulations are stable at temperatures as high as 300 - 400 degrees Celsius, while many alkoxy-substituted polymers decompose at lower temperatures. It has been thought that permeation of the more condensable gases, such as CO2 and H2S, could be enhanced by selection of pendant groups that exhibit higher affinities for these gases. In this paper, over 20 polyphosphazenes with a wide array of pendant groups will be discussed in terms of their CO2 transport properties. From this work, we have concluded that the chemical characteristics of the pendant group largely do not play a role in CO2 or permanent gas transport. More important are the physical characteristics of the polymer. For example, permeabilities were found to correlate well to the glass transition temperature of the polymer, regardless of the polarity of the pendant group. Thus, segmental chain motion and physical state of the polymer appear to play a more dominant role. This result differs sharply from data taken from liquid transport data that suggests a strong similarity in the solubility properties between the permeant and the polymer is required for higher permeation rates.
Date: October 1, 2005
Creator: Stewart, Frederick F. & Orme, Christopher J.
Partner: UNT Libraries Government Documents Department

Calculations of the structure and properties of rapidly quenched NI/ZR alloys.

Description: Using molecular dynamics and a modified embedded atom potential developed by our group we studied the diffusivity and viscosity of molten Nil-XZrX alloys as a function of composition, temperature, and cooling rate. Previous results indicate that these potentials represent the Ni-Zr system quite well . Liquid alloys were quenched at rates of 5 x 10{sup 11} and 10{sup 12} K/s. For x < 0.04 the solidified alloys were crystalline . For higher x values, the solidified alloys were amorphous . For the amorphous alloys, the composition dependence of the calculated glass transition temperature Tg follows the general trend of experimental Tg values . The calculated viscosity and diffusivity show systematic variation with composition . For the undercooled Ni-6 at .% Zr melt the calculated viscosity shows the Vogel-Fulcher-Tamman (VFT) behavior characteristic of a 'fragile' glass .
Date: January 1, 2003
Creator: Cherne, F. J. (Frank J.); Baskes, M. I. (Michael I.); Schwarz, R. B. (Ricardo B.) & Srivilliputhur, S. G. (Srinivasan G.)
Partner: UNT Libraries Government Documents Department


Description: One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.
Date: August 22, 2005
Creator: TRANQUADA, J.M.
Partner: UNT Libraries Government Documents Department


Description: We present results from a calculation of the transition temperature in QCD with two light (up, down) and one heavier (strange) quark mass as well as for QCD with three degenerate quark masses. Furthermore, we discuss first results from an ongoing calculation of the QCD equation of state with almost realistic light and strange quark masses.
Date: November 14, 2006
Creator: KARSCH, F.
Partner: UNT Libraries Government Documents Department

Superconductivity in SrNi2P2 single crystals

Description: Heat capacity, magnetic susceptibility, and resistivity of SrNi{sub 2}P{sub 2} single crystals are presented, illustrating the structural transition at 325 K, and bulk superconductivity at 1.4 K. The magnitude of {Tc}, fits to the heat capacity data, the small upper critical field H{sub c2} = 390 Oe, and {kappa} = 2.1 suggests a conventional fully gapped superconductor. With applied pressure we find that superconductivity persists into the so-called 'collapsed tetragonal' phase, although the transition temperature is monotonically suppressed with increasing pressure. This argues that reduced dimensionality can be a mechanism for increasing the transition temperatures of layered NiP, as well as layered FeAs and NiAs, superconductors.
Date: January 1, 2009
Creator: Ronning, Filip; Bauer, Eric D; Park, Tuscon & Thompson, Joe D
Partner: UNT Libraries Government Documents Department

Dynamic magnetic susceptibility of systems with long-range magnetic order

Description: The utility of the TDR as an instrument in the study of magnetically ordered materials has been expanded beyond the simple demonstration purposes. Results of static applied magnetic field dependent measurements of the dynamic magnetic susceptibility, ?, of various ferromagnetic (FM) and antiferromagnetic (AFM) materials showing a range of transition temperatures (1-800 K) are presented. Data was collected primarily with a tunnel diode resonator (TDR) at different radio-frequencies ({approx}10-30 MHz). In the vicinity of TC local moment ferromagnets show a very sharp, narrow peak in ? which is suppressed in amplitude and shifted to higher temperatures as the static bias field is increased. Unexpectedly, critical scaling analysis fails for these data. It is seen that these data are frequency dependent, however there is no simple method whereby measurement frequency can be changed in a controllable fashion. In contrast, itinerant ferromagnets show a broad maximum in ? well below TC which is suppressed and shifts to lower temperatures as the dc bias field is increased. The data on itinerant ferromagnets is fitted to a semi-phenomenological model that suggests the sample response is dominated by the uncompensated minority spins in the conduction band. Concluding remarks suggest possible scenarios to achieve frequency resolved data using the TDR as well as other fields in which the apparatus may be exploited.
Date: May 15, 2009
Creator: Vannette, Matthew Dano
Partner: UNT Libraries Government Documents Department

Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

Description: This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.
Date: December 19, 2009
Creator: Lio, Wilber Yaote
Partner: UNT Libraries Government Documents Department

Charge-Imbalance Relaxation in the Presence of a Pair-Breaking Interaction in Superconducting AlEr Films

Description: The charge-imbalance relaxation rate, 1/F*{sub T{sub Q*}}, has been measured in dirty superconducting AlEr films in which Er is a pair-breaking magnetic impurity that induces charge relaxation through elastic exchange scattering. Measurements were made in the range 0.1 {approx}< {Delta}(T)/k{sub B}T{sub c} {approx}< 1.4 for Er concentrations varying from 21 to 1660 at. ppm that produced estimated exchange scattering rates, {tau}{sub S}{sup -1}, from about 10{sup 9} sec{sup -1} to 5 x 10{sup 10} sec{sup -1}. Measured values of 1/F*{sub T{sub Q*}} were in good agreement with the Schmid-Schoen expression, 1/F*{sub T{sub Q*}}=({pi}{Delta}/4k{sub B}T{sub c}{tau}{sub E}) x (1+2{tau}{sub E}/{tau}{sub S}){sup 1/2}, for {Delta}/k{sub B}T{sub c} {approx}< 0.8, where {tau}{sub E}{sup -1} is the electron-phonon scattering rate estimated from the measured transition temperature. For larger values of {Delta}/k{sub B}T{sub c}, the relaxation rate increased less rapidly with {Delta}. The appropriate Boltzmann equation was solved on a computer to obtain values for 1/F*{sub T{sub Q*}} in the range 0.5 {approx}< T/T{sub c} {approx}< 0.999999. The computed values of 1/F*{sub T{sub Q*}} agreed with several analytic expressions valid for {Delta}/k{sub B}T{sub c} << 1, but not with the experimental data: The computed curves increased more rapidly than linearly with {Delta}/k{sub B}T{sub c} near T{sub c}, and the shape of the 1/F*{sub T{sub Q*}} vs {Delta}/k{sub B}T{sub c} curves was qualitatively different. This discrepancy suggests that either the generally accepted expression for exchange charge relaxation is incorrect, or that the Boltzmann equation is inappropriate for these calculations.
Date: July 1, 1980
Creator: Lemberger, T. R. & Clarke, J.
Partner: UNT Libraries Government Documents Department

Detection of Fatigue Damage Prior to Crack Initiation withScanning SQUID Microscopy

Description: The remanence fields of fatigued ferritic steel specimens were measured using a scanning microscope based on a high transition temperature Superconducting Quantum Interference Device (SQUID). The results show an overall increase of remanence until dislocation density saturates and an additional local remanence increase after saturation during cyclic loading. Because of the combined magnetic and spatial resolution of the SQUID microscope, these local changes of dislocation structures can be detected before a crack actually initiates, and identify the sites where crack nucleation will occur.
Date: November 7, 2005
Creator: Lee, Tae-Kyu; Morris, J. W., Jr.; Lee, Seungkyun & Clarke, John
Partner: UNT Libraries Government Documents Department

Functionalized Materials From Elastomers to High Performance Thermoplastics

Description: Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but ...
Date: May 31, 2003
Creator: Salazar, Laura Ann
Partner: UNT Libraries Government Documents Department