4,022 Matching Results

Search Results

Advanced search parameters have been applied.

Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

Description: The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.
Date: January 30, 2008
Creator: Bergman, Roberg G.; Gribble, Jr., Michael W. & Ellman, Jonathan A.
Partner: UNT Libraries Government Documents Department

Hyperfine Interaction in FeCl(2): Moessbauer Studies to 61 GPa

Description: Over a wide pressure range FeCl{sub 2} is rather compressible due to its layered structure. At low pressures h-FeCl{sub 2} condenses into a close-packed, hexagonal phase with a CdI{sub 2} structure similar to the other anhydrous divalent transition metal halides. Anhydrous FeCl{sub 2} was synthesized by a direct Fe-Cl{sub 2} reaction using Fe enriched to 25% {sup 57}Fe. The anhydrous material is colorless and transparent.
Date: February 1, 1999
Creator: Pasternak, M.P.; Taylor, R.D. & Xu, W.M.
Partner: UNT Libraries Government Documents Department

Metal Oxide Decomposition In Hydrothermal Alkaline Sodium Phosphate Solutions

Description: Alkaline hydrothermal solutions of sodium orthophosphate (2.15 < Na/P < 2.75) are shown to decompose transition metal oxides into two families of sodium-metal ion-(hydroxy)phosphate compounds. Equilibria for these reactions are quantified by determining phosphate concentration-temperature thresholds for decomposition of five oxides in the series: Ti(IV), Cr(III), Fe(III, II), Ni(II) and Zn(II). By application of a computational chemistry method General Utility Lattice Program (GULP), it is demonstrated that the unique non-whole-number Na/P molar ratio of sodium ferric hydroxyphosphate is a consequence of its open-cage structure in which the H{sup +} and excess Na{sup +} ions are located.
Date: September 24, 2003
Creator: Ziemniak, S.E.
Partner: UNT Libraries Government Documents Department

Retrograde Melting and Internal Liquid Gettering in Silicon

Description: Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.
Date: July 1, 2011
Creator: Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A. et al.
Partner: UNT Libraries Government Documents Department

2011 Organometallic Chemistry (July 10-15, 2011, Salve Regina University, Newport, RI)

Description: Organometallic chemistry has played and will continue to play a significant role in helping us understand the way bonds are made or broken in the presence of a transition metal complex. Current challenges range from the efficient exploitation of energy resources to the creative use of natural and artificial enzymes. Most of the new advances in the area are due to our extended understanding of processes at a molecular level due to new mechanistic studies, techniques to detect reaction intermediates and theory. The conference will bring the most recent advances in the field including nanocatalysis, surface organometallic chemistry, characterization techniques, new chemical reactivity and theoretical approaches along with applications to organic synthesis and the discovery of new materials. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Six outstanding posters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. Graduate students and postdoctoral fellows should also consider participating in the Gordon Research Seminar on Organometallic Chemistry (July 9-10, same location) which is specially designed to promote interaction and discussion between junior scientists.
Date: July 15, 2011
Creator: Bunel, Dr. Emilio
Partner: UNT Libraries Government Documents Department

Melting of bcc Transition Metals and Icosahedral Clustering

Description: In contrast to polyvalent metals, transition metals have low melting slopes(dT/dP) that are due to partially filled d-bands that allow for a lowering of liquid phase energy through s-d electron transfer and the formation of local structures. In the case of bcc transition metals we show the apparent discrepancy of DAC melting measurements with shock melting of Mo can be understood by reexamining the shock data for V and Ta and introducing the presence of an icosahedral short range order (ISRO) melt phase.
Date: May 26, 2006
Creator: Ross, M; Boehler, R & Japel, S
Partner: UNT Libraries Government Documents Department

Melting of Copper and Nickel at high pressure: the role of d-electrons

Description: Melting curves of Cu and Ni were measured to 97 GPa (3800 K) and 60 GPa (2970 K), respectively, in the laser-heated diamond cell. The measured melting temperatures of Cu are in good agreement with recent theoretical calculations. The melting slope (dT/dP) of Cu, which has a filled d-electron band, is about 2.5 times steeper than for Ni, which with one less electron, has a partially unfilled d-electron band. The relatively low melting slope obtained for Ni, measured using identical experimental methods as for Cu, is consistent with our previous measurements for other transition metals with partially filled d-bands, which are in serious disagreement with theoretical estimates. The present results confirm the key role d-shell electrons play in determining the high pressure melting curves.
Date: April 11, 2005
Creator: Japel, S; Boehler, R & Ross, M
Partner: UNT Libraries Government Documents Department

Melting of Transition Metals

Description: We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.
Date: April 11, 2005
Creator: Ross, M; Japel, S & Boehler, R
Partner: UNT Libraries Government Documents Department

Melting of transition metals at high pressure and the influence of liquid frustration. I. The late metals Cu, Ni and Fe

Description: This report focuses on the role that frustration, or preferred liquid local causes ordering, plays in the melting of transition metals. Specifically, Cu, Ni and Fe. It is proposed that for liquids of metals with partially filled d-bands (Ni and Fe) frustration caused by Peierls/Jahn-Teller distortion and pressure-induced s-d electron promotion provides a mechanism for creating and enhancing the stability of local structures. At the most elementary level, liquid structures are essentially impurities that lower the freezing point. In the case of transition metals with partially filled d-bands, the application of pressure induces s-d electron promotion increases the concentration of local structures. This leads to melting slopes for Ni and Fe that are considerably lower than measured for Cu, and lower than for theoretical predictions employing models in which liquid structures are neglected.
Date: March 15, 2007
Creator: Ross, M; Boehler, R & Errandonea, D
Partner: UNT Libraries Government Documents Department

On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

Description: Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.
Date: August 22, 2011
Creator: Vojvodic, Aleksandra
Partner: UNT Libraries Government Documents Department


Description: In order to reduce the precious metal loading without sacrificing activity and stability, a new method for the preparation of bimetallic catalysts is proposed. Currently, Pt-alloy particles, with 2 to 3 nm in diameter, are loaded on high surface area carbon supports. Of the Pt loaded, only the surface atoms interact with the reactants. In order to increase the Pt utilization per metal particle the new process for catalyst preparation will incorporate a non-noble transition metal core coated with a skin layer of Pt deposited on high surface area carbon. The effect of reducing agent strength during synthesis was also explored. It was determined that the Co addition has a higher impact on catalyst when used with NaBH4 as reducing agent as compared to NaCOOH.
Date: May 13, 2009
Creator: Fox, E.
Partner: UNT Libraries Government Documents Department

Contribution of Eu 4f states to the magnetic anisotropy of EuO

Description: Anisotropic x-ray magnetic linear dichroism (AXMLD) provides a novel element-, site-, shell-, and symmetry-selective techniques to study the magnetic anisotropy induced by a crystalline electric field. The weak Eu2+ M4,5 AXMLD observed in EuO(001) indicates that the Eu 4f states are not rotationally invariant and hence contribute weakly to the magnetic anisotropy of EuO. The results are contrasted with those obtained for 3d transition metal oxides.
Date: September 11, 2008
Creator: Arenholz, E.; Schmehl, A.; Schlom, D.G. & van der Laan, G.
Partner: UNT Libraries Government Documents Department

Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

Description: Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species.
Date: June 1, 2006
Creator: Lin, Yuehe; Fryxell, Glen E.; Yantasee, Wassana; Liu, Guodong & Wang, Zheming
Partner: UNT Libraries Government Documents Department

Microporous Metal Organic Materials for Hydrogen Storage

Description: We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.
Date: November 30, 2008
Creator: Sankar, S. G.; Li, Jing & Johnson, Karl
Partner: UNT Libraries Government Documents Department

Distinct local electronic structure and magnetism for Mn in amorphous Si and Ge

Description: Transition metals such as Mn generally have large local moments in covalent semiconductors due to their partially filled d shells. However, Mn magnetization in group-IV semiconductors is more complicated than often recognized. Here we report a striking crossover from a quenched Mn moment (<0.1 {mu}{sub B}) in amorphous Si (a-Si) to a large distinct local Mn moment ({ge}3{mu}{sub B}) in amorphous Ge (a-Ge) over a wide range of Mn concentrations (0.005-0.20). Corresponding differences are observed in d-shell electronic structure and the sign of the Hall effect. Density-functional-theory calculations show distinct local structures, consistent with different atomic density measured for a-Si and a-Ge, respectively, and the Mn coordination number N{sub c} is found to be the key factor. Despite the amorphous structure, Mn in a-Si is in a relatively well-defined high coordination interstitial type site with broadened d bands, low moment, and electron (n-type) carriers, while Mn in a-Ge is in a low coordination substitutional type site with large local moment and holes (p-type) carriers. Moreover, the correlation between N{sub c} and the magnitude of the local moment is essentially independent of the matrix; the local Mn moments approach zero when N{sub c} > 7 for both a-Si and a-Ge.
Date: June 1, 2010
Creator: Zeng, Li; Cao, J. X.; Helgren, E.; Karel, J.; Arenholz, E.; Ouyang, Lu et al.
Partner: UNT Libraries Government Documents Department


Description: Labeling techniques have been used to demonstrate that {eta}{sup 5} cyclopentadienyl(triphenylphosphine)dimethylcobalt(III) (1) undergoes intermolecular cobalt-to-cobalt methyl group exchange. The reaction follows second order kinetics; rate constants for methyl exchange between complexes 1 and its methylcyclopentadienyl analog 4 show decreasing magnitude with increasing bulk of cyclopentadienyl substituents. Studies of the reaction with excess triphenylphosphine and complexes labeled with the non-dissociating trimethylphosphine ligand indicate the reaction requires dissociation of phosphine from one of the two partners in the exchange before scrambling can take place. Further studies with other complexes (e.g., Cp{sub 2}Zr(CH{sub 3}){sub 2}) suggest that alkyl exchange between two transition metal centers may be a more general reaction than has heretofore been suspected.
Date: May 1, 1980
Creator: Bryndza, Henry E.; Evitt, Eric R. & Bergman, Robert G.
Partner: UNT Libraries Government Documents Department

Superconductivity in tight-binding approximation

Description: An interpretation of Barisic's relation for transition elements between the d-electron contribution to the cohesive energy and the local atomic parameter eta is presented. This relation is extended to a lattice with more than one atom per unit cell in the tight- binding approximation of rigid ions. It is conjectured that Barisic's relation is correct to first order approximation for transition metal alloys, provided the phonon induced d-d coupling is the dominant mechanism for superconductivity. (auth)
Date: October 1, 1975
Creator: Poon, S.J.
Partner: UNT Libraries Government Documents Department

Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

Description: The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.
Date: September 30, 2007
Creator: Argyle, Morris; Ackerman, John; Muknahallipatna, Suresh; Hamann, Jerry; Legowski, Stanislaw; Zhao, Gui-Bing et al.
Partner: UNT Libraries Government Documents Department

Work Functions of the transition Metals and Metal Silicides

Description: The work functions of polycrystalline metals are often used to systematize Schottky barrier height data for rectifying contacts to semiconductors. Rectifying contacts to silicon devices are predominantly formed using conductive metal silicides with work functions which are not as well characterized as metal work functions. The present work has two objectives. First, it classifies the transition metals using correlations between the metal work function and the atomic chemical potential. Second, the available data for metal silicides is collected and interpreted using an average charge transfer (ACT) model. The ACT model accounts for the electronic hardness of the component elements in addition to their chemical potentials. New trends in the behavior of silicide work functions are identified.
Date: February 15, 1999
Creator: Drummond, T.J.
Partner: UNT Libraries Government Documents Department

Study of intermediates from transition metal excited-state electron-transfer reactions. Final report, August 4, 1986--August 31, 1997

Description: The techniques of continuous photolysis and pulsed laser flash photolysis, continuous and pulse radiolysis, fast-scan cyclic voltammetry, and time-resolved fluorimetry have been used to examine intramolecular electron transfer within the solvent quenching cage, photodynamics of quenching of the excited states of transition-metal photosensitizers, the properties of excites states and one-electron reduced forms, ground- and excited-state interactions with solutes, and photoinduced oxidations of organic solutes in aqueous solution. The following specific areas were examined: (1) the parameters that govern the yields of redox products from excited-state electron-transfer quenching reactions; (2) the mediation of the properties of excited states and one-electron reduced forms by the ligands and the solution medium; (3) the effect of the interactions between the ground state of the complex and the solution components on the behavior of the excited state; (4) the yields of singlet oxygen from excited-state energy-transfer quenching by O{sub 2}; and (5) the oxidations of solutes by singlet oxygen, excited-state electron-transfer quenching, and free radicals. This report contains the abstracts of 50 publications describing the studies.
Date: December 31, 1997
Creator: Hoffman, M.Z.
Partner: UNT Libraries Government Documents Department

Transition Metal Complexes of Cr, Mo, W and Mn Containing {eta}{sup 1}(S)-2,5-Dimethylthiophene, Benzothiophene and Dibenzothiophene Ligands

Description: The UV photolysis of hexanes solutions containing the complexes M(CO){sub 6} (M=Cr, Mo, W) or CpMn(CO){sub 3} (Cp={eta}{sup 5}-C{sub 5}H{sub 5}) and excess thiophene (T{sup *}) (T{sup *}=2,5-dimethylthiophene (2,5-Me{sub 2}T), benzothiophene (BT), and dibenzothiophene (DBT)) produces the {eta}{sup 1}(S)-T{sup *} complexes (CO){sub 5}M({eta}{sup 1}(S)-T{sup *}) 1-8 or Cp(CO){sub 2}Mn({eta}{sup 1}(S)-T{sup *})9-11, respectively. However, when T{sup *}=DBT, and M=Mo, a mixture of two products result which includes the {eta}{sup 1}(S)-DBT complex (CO){sub 5}Mo({eta}{sup 1}(S)-DBT) 4a and the unexpected {pi}-complex (CO){sub 3}Mo({eta}{sup 6}-DBT) 4b as detected by {sup 1}H NMR. The liability of the {eta}{sup 1}(S)-T{sup *} ligands is illustrated by the rapid displacement of DBT in the complex (CO){sub 5}W({eta}{sup 1}(S)-DBT) (1) by THF, and also in the complexes (CO){sub 5}Cr({eta}{sup 1}(S)-DBT) (5) and CpMn(CO){sub 2}({eta}{sup 1}(S)-DBT) (9) by CO (1 atm) at room temperature. Complexes 1-11 have been characterized spectroscopically ({sup 1}H NMR, IR) and when possible isolated as analytically pure solids (elemental analysis, EIMS). Single crystal, X-ray structural determinations are reported for (CO){sub 5}W({eta}{sup 1}(S)-DBT) and Cp(CO){sub 2}Mn({eta}{sup 1}(S)-DBT).
Date: September 21, 2000
Creator: Reynolds, M.
Partner: UNT Libraries Government Documents Department

Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

Description: There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.
Date: January 8, 1997
Creator: Andrews, Mark
Partner: UNT Libraries Government Documents Department