2 Matching Results

Search Results

Advanced search parameters have been applied.

Identifying Electronic Properties Relevant to Improving the Performance and Stability of Amorphous Silicon Based Photovoltaic Cells: Final Subcontract Report, 27 November 2002--31 March 2005

Description: A major effort during this subcontract period has been to evaluate the microcrystalline Si material under development at United Solar Ovonics Corporation (USOC). This material is actually a hydrogenated nanocrystalline form of Si and it will be denoted in this report as nc-Si:H. Second, we continued our studies of the BP Solar high-growth samples. Third, we evaluated amorphous silicon-germanium alloys produced by the hot-wire chemical vapor deposition growth process. This method holds some potential for higher deposition rate Ge alloy materials with good electronic properties. In addition to these three major focus areas, we examined a couple of amorphous germanium (a-Ge:H) samples produced by the ECR method at Iowa State University. Our studies of the electron cyclotron resonance a-Ge:H indicated that the Iowa State a Ge:H material had quite superior electronic properties, both in terms of the drive-level capacitance profiling deduced defect densities, and the transient photocapacitance deduced Urbach energies. Also, we characterized several United Solar a Si:H samples deposited very close to the microcrystalline phase transition. These samples exhibited good electronic properties, with midgap defect densities slightly less than 1 x 1016 cm-3 in the fully light-degraded state.
Date: November 1, 2005
Creator: Cohen, J. D.
Partner: UNT Libraries Government Documents Department

Identifying the Electronic Properties Relevant to Improving the Performance of High Band-Gap Copper Based I-III-VI2 Chalcopyrite Thin Film Photovoltaic Devices: Final Subcontract Report, 27 April 2004-15 September 2007

Description: This report summarizes the development and evaluation of higher-bandgap absorbers in the CIS alloy system. The major effort focused on exploring suitable absorbers with significant sulfur alloying in collaboration with Shafarman's group at the Institute of Energy Conversion. Three series of samples were examined; first, a series of quaternary CuIn(SeS)2-based devices without Ga; second, a series of devices with pentenary Cu(InGa)(SeS)2 absorbers in which the Se-to-S and In-to-Ga ratios were chosen to keep the bandgap nearly constant, near 1.52 eV. Third, based on the most-promising samples in those two series, we examined a series of devices with pentenary Cu(InGa)(SeS)2 absorbers with roughly 25 at.% S/(Se+S) ratios and varying Ga fractions. We also characterized electronic properties of several wide-bandgap CuGaSe2 devices from both IEC and NREL. The electronic properties of these absorbers were examined using admittance spectroscopy, drive-level capacitance profiling, transient photocapacitance, and transient photocurrent optical spectroscopies. The sample devices whose absorbers had Ga fraction below 40 at.% and S fractions above 20 at.% but below 40% exhibited the best electronic properties and device performance.
Date: August 1, 2008
Creator: Cohen, J. D.
Partner: UNT Libraries Government Documents Department