376 Matching Results

Search Results

Advanced search parameters have been applied.

VARIATIONS IN REPRODUCTIVE TOXICANT IDENTIFICATION

Description: Reproductive toxicants are a very important class of compounds. They present unique hazards to those of child bearing ages, perform their 'dirty work' using a wide variety of mechanisms on a number of different organs, and are regulatorily important. Because of all of this, properly identifying reproductive toxicants is important, but fraught with difficulty. In this paper we will describe types or reproductive toxicants, their importance, and both mistakes and good practices that people who are not experts in reproductive toxicology may use in their attempts to identify them. Additionally, this paper will focus on chemical reproductive toxicants and will not address biological agents that could affect reproductive toxicity although many principles outlined here could be applied to that endeavor.
Date: May 13, 2008
Creator: Simmons, F
Partner: UNT Libraries Government Documents Department

TOXIC SUBSTANCES FROM COAL COMBUSTION

Description: The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury L<sub>III</sub> XAFS work was ...
Date: December 8, 1998
Creator: KOLKER, A; SAROFIM, AF; SENIOR, CL; HUGGINS, FE; HUFFMAN, GP; OLMEZ, I et al.
Partner: UNT Libraries Government Documents Department

Chemistry of Mercury Species and Their Control in Coal Combustion

Description: Silica aggregates produced in a tubular aerosol reactor were classified according to the electrical mobility equivalent radius by differential mobility analyzer. Then E the classified aerosol was further analyzed by in situ light scattering measurement and TEM micrograph analysis to evaluate the properties of agglomerates, such as the radius of gyration, fractal dimension, primary particle diameter and number of primary particles. Based on the properties measured by the experiments, the actual surface area of the silica sorbent particles can be calculated.
Date: February 28, 1998
Partner: UNT Libraries Government Documents Department

2004 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

Description: Section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. For reporting year 2004, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds, nitric acid, and nitrate compounds as required under the EPCRA Section 313. No other EPCRA Section 313 chemicals were used in 2004 above the reportable thresholds. This document provides a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2004, as well as background information about data included on the Form R reports.
Date: January 15, 2006
Creator: Stockton, M.
Partner: UNT Libraries Government Documents Department

222-S LABORATORY FUME HOOD TESTING STUDY

Description: The 222-S Laboratory contains 155 active fume hoods that are used to support analytical work with radioactive and/or toxic materials. The performance of a fume hood was brought into question after employees detected odors in the work area while mixing chemicals within the subject fume hood. Following the event, testing of the fume hood was conducted to assess the performance of the fume hood. Based on observations from the testing, it was deemed appropriate to conduct performance evaluations of other fume hoods within the laboratory.
Date: March 26, 2007
Creator: Ruelas, B. H.
Partner: UNT Libraries Government Documents Department

2006 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

Description: For reporting year 2006, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead as required under the Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2006 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2006, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.
Date: December 12, 2007
Creator: Ecology and Air Quality Group & Hinojosa, Hector
Partner: UNT Libraries Government Documents Department

Environmental standards for primary and secondary containment systems and transfer stations

Description: Environmental Standards for Primary and Secondary Containment Systems and Transfer Stations will supersede all previous requirements for design of dikes, storage tanks, and transfer stations in order to maintain consistency throughout the Y-12 Plant. This document is organized into six distinct sections, each with a specific purpose. Section I outlines the objectives of the document along with its applications and limitations; this section should be of interest to all readers for essential background information. Section II lists all definitions and is consistent with definitions outlined by environmental regulations. Section III discusses primary containment standards. Section IV outlines secondary containment standards; this section contains the actual standards for the diking of storage tanks and storage containers. Section V discusses transfer station standards. Section VI of this document outlines how exemptions may be granted for specific cases.
Date: April 1, 1995
Creator: Maguire, D.M.
Partner: UNT Libraries Government Documents Department

B Plant facility description

Description: Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.
Date: October 4, 1996
Creator: Chalk, S.E.
Partner: UNT Libraries Government Documents Department

Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

Description: A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.
Date: March 1, 1997
Creator: Liekhus, K.; Grandy, J. & Chambers, A.
Partner: UNT Libraries Government Documents Department

Headspace gas and vapor characterization summary for the 43 vapor program suspect tanks

Description: During the time period between February 1994 and September 1995, Westinghouse Hanford Company (WHC) sampled the waste tank headspace of 43 single-shell tanks for a variety of gaseous and/or volatile and semi-volatile compounds. This report summarizes the results of analyses of those sampling activities with respect to both the Priority 1 Safety Issues and relative to the detection in the headspace of significant concentrations of target analytes relating to worker breathing space consideration as recommended by the Pacific Northwest Laboratory (PNL) Toxicology Review Panel. The information contained in the data tables was abstracted from the vapor sampling and analysis tank characterization reports. Selected results are tabulated and summarized. Sampling equipment and methods, as well as sample analyses, are briefly described. Vapor sampling of passively ventilated single-shell tanks (tanks C-105, C-106, and SX-106 were sampled and are actively ventilated) has served to highlight or confirm tank headspace conditions associated with both priority 1 safety issues and supports source term analysis associated with protecting worker health and safety from noxious vapors
Date: September 28, 1995
Creator: Huckaby, J. L. & Bratzel, D. R.
Partner: UNT Libraries Government Documents Department

Reference manual for toxicity and exposure assessment and risk characterization. CERCLA Baseline Risk Assessment

Description: The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980) (CERCLA or Superfund) was enacted to provide a program for identifying and responding to releases of hazardous substances into the environment. The Superfund Amendments and Reauthorization Act (SARA, 1986) was enacted to strengthen CERCLA by requiring that site clean-ups be permanent, and that they use treatments that significantly reduce the volume, toxicity, or mobility of hazardous pollutants. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (USEPA, 1985; USEPA, 1990) implements the CERCLA statute, presenting a process for (1) identifying and prioritizing sites requiring remediation and (2) assessing the extent of remedial action required at each site. The process includes performing two studies: a Remedial Investigation (RI) to evaluate the nature, extent, and expected consequences of site contamination, and a Feasibility Study (FS) to select an appropriate remedial alternative adequate to reduce such risks to acceptable levels. An integral part of the RI is the evaluation of human health risks posed by hazardous substance releases. This risk evaluation serves a number of purposes within the overall context of the RI/FS process, the most essential of which is to provide an understanding of ``baseline`` risks posed by a given site. Baseline risks are those risks that would exist if no remediation or institutional controls are applied at a site. This document was written to (1) guide risk assessors through the process of interpreting EPA BRA policy and (2) help risk assessors to discuss EPA policy with regulators, decision makers, and stakeholders as it relates to conditions at a particular DOE site.
Date: March 1, 1995
Partner: UNT Libraries Government Documents Department

BNL Citric Acid Technology: Pilot Scale Demonstration

Description: The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. ...
Date: September 24, 1999
Creator: FRANCIS, A J; DODGE,; J, C; GILLOW, J B & FORRESTER, K E
Partner: UNT Libraries Government Documents Department

1995 Toxic chemical release inventory: Emergency Planning and Community Right-to-Know Act of 1986, Section 313

Description: Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) requires the annual submittal of toxic chemical release information to the U.S. Environmental Protection Agency.Executive Order 12856, `Federal Compliance With Right-to-Know Laws and Pollution Prevention Requirements` extends the requirements of EPCRA to all Federal agencies. The following document is the August 1996 submittal of the Hanford Site Toxic Chemical Release Inventory report. Included is a Form R for ethylene glycol, the sole chemical used in excess of the established regulatory thresholds at the Hanford Site by the U.S. Department of Energy, Richland Operations Office and its contractors during Calendar Year 1995.
Date: August 1, 1996
Creator: Mincey, S.L.
Partner: UNT Libraries Government Documents Department

Waste disposal in underground mines -- A technology partnership to protect the environment

Description: Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment.
Date: December 31, 1995
Partner: UNT Libraries Government Documents Department

Wastes characterization using APSTNG technology

Description: The associated-particle sealed-tube neutron generator (APSTNG) interrogates the inspected object with 14-MeV neutrons from d-t reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra from resulting neutron reactions inside the inspected volume identify fissionable materials and many nuclides. Flight times from detection times of the gamma rays and alpha particles separate the prompt and delayed gamma-ray spectra and can yield coarse tomographic images from a single orientation. The high-energy neutrons and gamma rays penetrate large objects and dense materials. The gamma-ray detector and neutron generator can be on the same side of the interrogated objects, so walls and other confined areas can be inspected as well as sealed containers. No collimators or radiation shielding are needed. The neutron generator is simple and small. Commercial electronics are used. A complete system could be transported in a van. Laboratory and limited field tests indicate APSTNG could be useful in analyzing radioactive waste in drums, walls, soils, and processing systems, particularly for unknown or heterogeneous configurations that may attenuate radiation. Toxic chemicals could be identified in mixed waste, and the ability to detect pockets of water may address criticality concerns.
Date: March 1996
Creator: Rhodes, E. A. & Dickerman, C. E.
Partner: UNT Libraries Government Documents Department

Toxic chemical considerations for tank farm releases

Description: This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.
Date: August 1, 1996
Creator: Van Keuren, J.C. & Davis, J.S., Westinghouse Hanford
Partner: UNT Libraries Government Documents Department

1998 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III

Description: The Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 [also known as the Superfund Amendment and Reauthorization Act (SARA), Title III], as modified by Executive Order 12856, requires that all federal facilities evaluate the need to submit an annual Toxic Chemical Release Inventory report as prescribed in Title III, Section 313 of this Act. This annual report is due every July for the preceding calendar year. Owners and operators who manufacture, process, or otherwise use certain toxic chemicals above listed threshold quantities are required to report their toxic chemical releases to all environmental mediums (air, water, soil, etc.). At Los Alamos National Laboratory (LANL), no EPCRA Section 313 chemicals were used in 1998 above the reportable threshold limits of 10,000 lb or 25,000 lb. Therefore LANL was not required to submit any Toxic Chemical Release Inventory reports (Form Rs) for 1998. This document was prepared to provide a detailed description of the evaluation on chemical usage and EPCRA Section 313 threshold determinations for LANL for 1998.
Date: November 1, 1999
Creator: Stockton, Marjorie B.
Partner: UNT Libraries Government Documents Department

ICPP radiological and toxicological sabotage analysis

Description: In June of 1993, the Department of Energy (DOE) issued Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} which states that all significant radiological and toxicological hazards at Department facilities must be examined for potential sabotage. This analysis has been completed at the Idaho Chemical Processing Plant (ICPP). The ICPP radiological and toxicological hazards include spent government and commercial fuels, Special Nuclear Materials (SNM), high-level liquid wastes, high-level solid wastes, and process and decontamination chemicals. The analysis effort included identification and assessment of quantities of hazardous materials present at the facility; identification and ranking of hazardous material targets; development of worst case scenarios detailing possible sabotage actions and hazard releases; performance of vulnerability assessments using table top and computer methodologies on credible threat targets; evaluation of potential risks to the public, workers, and the environment; evaluation of sabotage risk reduction options; and selection of cost effective prevention and mitigation options.
Date: October 1, 1995
Creator: Kubiak, V.R. & Mortensen, F.G.
Partner: UNT Libraries Government Documents Department

Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations

Description: To provide fundamental mechanistic studies of laser-produced particulate formation in support of the analysis of radioactive and/or toxic materials by Laser Assisted-Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS).
Date: June 1, 1999
Creator: Dickinson, J. Thomas
Partner: UNT Libraries Government Documents Department

Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations

Description: To provide fundamental mechanistic studies of laser-produced particulate formation in support of the analysis of radioactive and/or toxic materials by Laser Assisted-Inductively Coupled Plasma Mass Spectroscopy (LA/ICP-MS).
Date: June 1, 2000
Creator: Dickinson, J. Thomas & Alexander, Michael L.
Partner: UNT Libraries Government Documents Department

Survey of Packaging Requirements for the Transport of Highly Hazardous Materials

Description: Among hazardous materials those which are most dangerous fall into three categories: chemical, biological, and radioactive. The DOT hazard classes for these three categories are Hazard Class 2.3 (poisonous gases) and 6.1 (toxic substances) for chemical hazards, Hazard Class 6.2 (infectious substances) for biological hazards and Hazard Class 7 for radioactive material (RAM) hazards. The packaging requirements for chemical and biological hazards are outlined and compared with RAM packaging requirements. RAM packages are found to be able to withstand much more severe performance tests than packages for other, more lethal hazards.
Date: May 6, 2003
Creator: Smith, A.C.
Partner: UNT Libraries Government Documents Department