901 Matching Results

Search Results

Advanced search parameters have been applied.

The Uranium-Titanium Alloy System

Description: Abstract: "A uranium-titanium constitution diagram is presented. There is complete solid solubility between titanium and gamma uranium above about 2100 F. Only one compound exists in the system. It has a hexagonal structure based on U2Ti. It has a fairly wide range of stability, particularly on the titanium side. Beta-titanium solid solution decomposes eutectoidally into alpha titanium and compound at 1150 F. Eutectoid composition is about 72 atomic per cent titanium. Gamma-uranium solid solution decomposes eutectoidally at 1325 F into beta uranium and compound. Eutectoid composition is about 6 atomic per cent titanium. Beta uranium and compound react peritectoidally at 1233 F to give alpha uranium. Solubility of titanium in alpha and beta uranium is low as is the solubility or uranium in alpha titanium."
Date: November 5, 1952
Creator: Udy, Murray C. & Boulger, Francis W.
Partner: UNT Libraries Government Documents Department

Preparation, Cladding, and Evaluation of Titanium-boron Dispersions

Description: This report discusses tests on the preparation and cladding of hot-pressed and pressure-bonded titanium-boron. It explores the properties of titanium-boron as a control material in reactors.
Date: June 9, 1957
Creator: Paprocki, Stan J.; Keller, Donald L.; Hodge, Edwin S.; Cunningham, George W.; Gedwill, Michael A. & Lozier, Donald E.
Partner: UNT Libraries Government Documents Department

Elevated-temperature fatigue properties of two titanium alloys

Description: Report presenting an investigation to evaluate the unnotched fatigue properties of two titanium alloys at elevated temperatures. A variety of temperatures were tested and the results are provided in tabular form and as curves of stress versus cycles to failure for each test temperature. Both alloys were found to have potential use at the temperature ranges investigated.
Date: April 24, 1956
Creator: Rey, William K.
Partner: UNT Libraries Government Documents Department

Phase Separation and Second Phase Precipitation in Beta Titanium Alloys

Description: The current understanding of the atomic scale phenomenon associated with the influence of beta phase instabilities on the evolution of microstructure in titanium alloys is limited due to their complex nature. Such beta phase instabilities include phase separation and precipitation of nano-scale omega and alpha phases in the beta matrix. The initial part of the present study focuses on omega precipitation within the beta matrix of model binary titanium molybdenum (Ti-Mo) alloys. Direct atomic scale observation of pre-transition omega-like embryos in quenched alloys, using aberration-corrected high resolution scanning transmission electron microscopy and atom probe tomography (APT) was compared and contrasted with the results of first principles computations performed using the Vienna ab initio simulation package (VASP) to present a novel mechanism of these special class of phase transformation. Thereafter the beta phase separation and subsequent alpha phase nucleation in a Ti-Mo-Al ternary alloy was investigated by coupling in-situ high energy synchrotron x-ray diffraction with ex-situ characterization studies performed using aberration corrected transmission electron microscopy and APT to develop a deeper understanding of the mechanism of transformation. Subsequently the formation of the omega phase in the presence of simultaneous development of compositional phase separation within the beta matrix phase of a Ti-10V-6Cu (wt%) alloy during continuous cooling has been investigated using a combination of transmission electron microscopy and atom probe tomography. The results of these investigations provided novel insights into the mechanisms of solid-state transformations in metallic systems by capturing the earliest stages of nucleation at atomic to near atomic spatial and compositional resolution.
Date: May 2011
Creator: Devaraj, Arun
Partner: UNT Libraries

Exceptional Properties in Friction Stir Processed Beta Titanium Alloys and an Ultra High Strength Steel

Description: The penchant towards development of high performance materials for light weighting engineering systems through various thermomechanical processing routes has been soaring vigorously. Friction stir processing (FSP) - a relatively new thermomechanical processing route had shown an excellent promise towards microstructural modification in many Al and Mg alloy systems. Nevertheless, the expansion of this process to high temperature materials like titanium alloys and steels is restricted by the limited availability of tool materials. Despite it challenges, the current thesis sets a tone for the usage of FSP to tailor the mechanical properties in titanium alloys and steels. FSP was carried out on three near beta titanium alloys, namely Ti6246, Ti185 and Tiβc with increasing β stability index, using various tool rotation rates and at a constant tool traverse speed. Microstructure and mechanical property relationship was studied using experimental techniques such as SEM, TEM, mini tensile testing and synchrotron x-ray diffraction. Two step aging on Ti6246 had resulted in an UTS of 2.2GPa and a specific strength around 500 MPa m3/mg, which is about 40% greater than any commercially available metallic material. Similarly, FSP on an ultra-high strength steel―Eglin steel had resulted in a strength greater than 2GPa with a ductility close to 10% at around 4mm from the top surface of stir zone (SZ). Experimental techniques such as microhardness, mini-tensile testing and SEM were used to correlate the microstructure and properties observed inside SZ and HAZ's of the processed region. A 3D temperature modeling was used to predict the peak temperature and cooling rates during FSP. The exceptional strength ductility combinations inside the SZ is believed to be because of mixed microstructure comprised of various volume fractions of phases such as martensite, bainite and retained austenite.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Tungala, Vedavyas
Partner: UNT Libraries

High temperature properties of alloys being considered for design of a concentric canister launcher

Description: This report describes a study to determine the high temperature mechanical properties of several titanium alloys and to compare them with properties of AISI 316L stainless steel and ASTM A 387 structural steel. The steel materials are less costly to procure but exhibit good resistance to corrosion in seawater environments. Six titanium alloys were evaluated as candidate materials for use in a c Concentric Canister Launcher (CCL). Each titanium alloy was tested at three temperatures (68°, 2000°F, and 2400°F). Strain-rate changes tests were used to determine the strain rate sensitivity of the alloys at each test temperature. Optical metallography was performed on two of the alloys to determine the relationship between test temperature and microstructure (presence of second phase precipitates, grain size). Complete test results are includes, a long with figures and tables of test data.
Date: June 1, 1998
Creator: Kassner, M E; Lowry, R W & Rosen, R S
Partner: UNT Libraries Government Documents Department

Mechanical response and microcrack formation in a fine-grained duplex TiAl at different strain rates and temperatures

Description: Compressive behavior of this alloy was studied at strain rates of 0. 001 and 2000 sec{sup -1} and temperatures from -196 C to 1200 C. Temperature dependence of yield stress was found to depend on strain rate: At the quasi-static strain rate, 0.001 sec{sup -1}, the yield stress decreases with temperature with a plateau between 200 and 800 C. At the high strain rate, 2000 sec{sup -1}, the yield stress exhibits a positive temperature dependence above 600 C. Strain hardening rate decreases dramatically with temperature in the very low and high temperature regions with a plateau at intermediate temperatures for both strain rates. As the strain rate increases, the strain hardening rate plateaus extended to higher temperatures. The strain rate sensitivity increases slightly with temperature (but less than 0.1) for strain rates above 0.001 sec{sup -1}. However, at a strain rate of 0.001 sec{sup -1}, there is a dramatic increase in the strain rate sensitivity with temperature; above 1100 C, the rate sensitivity becomes much larger. Microcracks occurring in grain interiors and at grain boundaries were observed at all strain rates and temperatures. Formation and distribution of microcracks were found to vary depending on strain rate and deformation temperature.
Date: October 1996
Creator: Jin, Z.; Cady, C.; Gray, G. T., III & Kim, Y.-W.
Partner: UNT Libraries Government Documents Department

Passive films and blistering of titanium

Description: Coupons of titanium alloys under consideration as components of the Engineered Barrier System in the proposed repository at Yucca Mountain have been evaluated for their passive film composition and stability. Oxide depths and compositions on specimens exposed in long-term corrosion testing for one year were determined with x-ray photoemission spectroscopy. The specimens removed from long-term testing, as well as separate coupons polarized cathodically in an electrochemical cell, exhibited blistering associated with hydride formation in both scanning electron microscopy and atomic force microscopy.
Date: December 1, 1998
Creator: Bedrossian, P J; Estill, J C; Farmer, J C; McCright, R D & Phinney, D L
Partner: UNT Libraries Government Documents Department

Task 6.7.3 - Interfacial Mass Transport Effects in Composite Materials

Description: Advanced metal-matrix composites (MMCS) consisting of titanium-based alloys possess some unique mechanical, physical, and chemical characteristics that make them highly desirable for aircraft and gas turbine engines. Tailoring MMC properties is essential for advanced product design in materials processing. The main factors that affect materials processing and, further, the nature of a metal-ceramic interface, its structure, and morphological stability is liquid surface mass transport related to adhesional wetting (physical effect) and reactive wetting (chemical effect).' Surfaces and interfaces dominate many of the technologically important processes in composite materials such as liquid-solid sintering and joining. The objective of this work is threefold: 1) to get insight into the role of the nonstoichiometry of chemical composition in ceramic materials used as reinforcement components in MMC processing, 2) to extend previous energetic analysis of mass transport phenomena to wetting behavior between liquid metal and the quasi-solidlike skin resulting from the presolidification of liquid on nonstoichiometric solids on a scale of interatomic distance, and 3) to provide experimental verification of our concept.
Date: February 1, 1998
Creator: Nowok, Jan W.
Partner: UNT Libraries Government Documents Department

Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging

Description: This article demonstrates that low-temperature aging (LTA) treatments for short time periods can in fact enhance the yield strength while preserving substantial elongation-to-failure in ω containing β titanium alloys.
Date: May 10, 2017
Creator: Sun, F.; Zhang, J.Y.; Vermaut, P.; Choudhuri, Deep; Alam, Talukder; Mantri, Srinivas Aditya et al.
Partner: UNT College of Engineering

First Principles Study of Metastable Beta Titanium Alloys

Description: The high temperature BCC phase (b) of titanium undergoes a martensitic transformation to HCP phase (a) upon cooling, but can be stabilized at room temperature by alloying with BCC transition metals such as Mo. There exists a metastable composition range within which the alloyed b phase separates into a + b upon equilibrium cooling but not when rapidly quenched. Compositional partitioning of the stabilizing element in as-quenched b microstructure creates nanoscale precipitates of a new simple hexagonal w phase, which considerably reduces ductility. These phase transformation reactions have been extensively studied experimentally, yet several significant questions remain: (i) The mechanism by which the alloying element stabilizes the b phase, thwarts its transformation to w, and how these processes vary as a function of the concentration of the stabilizing element is unclear. (ii) What is the atomistic mechanism responsible for the non-Arrhenius, anomalous diffusion widely observed in experiments, and how does it extend to low temperatures? How does the concentration of the stabilizing elements alter this behavior? There are many other w forming alloys that such exhibit anomalous diffusion behavior. (iii) A lack of clarity remains on whether w can transform to a -phase in the crystal bulk or if it occurs only at high-energy regions such as grain boundaries. Furthermore, what is the nature of the a phase embryo? (iv) Although previous computational results discovered a new wa transformation mechanism in pure Ti with activation energy lower than the classical Silcock pathway, it is at odds with the a / b / w orientation relationship seen in experiments. First principles calculations based on density functional theory provide an accurate approach to study such nanoscale behavior with full atomistic resolution, allowing investigation of the complex structural and chemical effects inherent in the alloyed state. In the present work, a model Ti-Mo ...
Date: August 2015
Creator: Gupta, Niraj
Partner: UNT Libraries

Combinatorial Assessment of the Influence of Composition and Exposure Time on the Oxidation Behavior and Concurrent Oxygen-induced Phase Transformations of Binary Ti-x Systems

Description: The relatively low oxidation resistance and subsequent surface embrittlement have often limited the use of titanium alloys in elevated temperature structural applications. Although extensive effort is spent to investigate the high temperature oxidation performance of titanium alloys, the studies are often constrained to complex technical titanium alloys and neither the mechanisms associated with evolution of the oxide scale nor the effect of oxygen ingress on the microstructure of the base metal are well-understood. In addition lack of systematic oxidation studies across a wider domain of the alloy composition has complicated the determination of composition-mechanism-property relationships. Clearly, it would be ideal to assess the influence of composition and exposure time on the oxidation resistance, independent of experimental variabilities regarding time, temperature and atmosphere as the potential source of error. Such studies might also provide a series of metrics (e.g., hardness, scale, etc) that could be interpreted together and related to the alloy composition. In this thesis a novel combinatorial approach was adopted whereby a series of compositionally graded specimens, (Ti-xMo, Ti-xCr, Ti-xAl and Ti-xW) were prepared using Laser Engineered Net Shaping (LENS™) technology and exposed to still-air at 650 °C. A suite of the state-of-the-art characterization techniques were employed to assess several aspects of the oxidation reaction as a function of local average composition including: the operating oxidation mechanisms; the structure and composition of the oxides; the oxide adherence and porosity; the thickness of the oxide layers; the depth of oxygen ingress; and microstructural evolution of the base material just below the surface but within the oxygen-enriched region. The results showed that for the Ti-Mo, Ti-Al and Ti-W systems a parabolic oxidation rate law is obeyed in the studied composition-time domain while Ti-Cr system experiences a rapid breakaway oxidation regime at low solute concentrations. The only titanium oxide phase present in ...
Date: May 2015
Creator: Samimi, Peyman
Partner: UNT Libraries

Test of a NbTi Superconducting Quadrupole Magnet Based on Alternating Helical Windings

Description: It has been shown that by superposing two solenoid-like thin windings, that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is cos({theta})-like and the resulting magnetic field in the bore is a pure dipole field. Following a previous test of such a superconducting dipole magnet, a quadrupole magnet was designed and built using similar principles. This paper describes the design, construction and test of a 75 mm bore 600 mm long superconducting quadrupole made with NbTi wire. The simplicity of the design, void of typical wedges, end-spacers and coil assembly, is especially suitable for future high field insert coils using Nb{sub 3}Sn as well as HTS wires. The 3 mm thick coil reached 46 T/m but did not achieve its current plateau.
Date: August 16, 2009
Creator: Caspi, S.; Trillaud, F.; Godeke, A.; Dietderich, D.; Ferracin, P.; Sabbi, G. et al.
Partner: UNT Libraries Government Documents Department

Recent Test Results of the High Field Nb3Sn Dipole Magnet HD2

Description: The 1 m long Nb{sub 3}Sn dipole magnet HD2, fabricated and tested at Lawrence Berkeley National Laboratory, represents a step towards the development of block-type accelerator quality magnets operating in the range of 13-15 T. The magnet design features two coil modules composed of two layers wound around a titanium-alloy pole. The layer 1 pole includes a round cutout to provide room for a bore tube with a clear aperture of 36 mm. After a first series of tests where HD2 reached a maximum bore field of 13.8 T, corresponding to an estimated peak field on the conductor of 14.5 T, the magnet was disassembled and reloaded without the bore tube and with a clear aperture increased to 43 mm. We describe in this paper the magnet training observed in two consecutive tests after the removal of the bore tube, with a comparison of the quench performance with respect to the previous tests. An analysis of the voltage signals recorded before and after training quenches is then presented and discussed, and the results of coil visual inspections reported.
Date: October 19, 2009
Creator: Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Felice, H. et al.
Partner: UNT Libraries Government Documents Department

The Role of Misfit Strain and Oxygen Content on Formation and Evolution of Omega Precipitate in Metastable Beta-titanium Alloys

Description: β-Ti alloys are widely used in airframe and biomedical applications due to their high ductility, high hardenability, and low elastic modulus. The phase transformations in β-Ti alloys are rather complex due to formation of metastable phases during various thermo-mechanical treatments. One such critical metastable phase, the hexagonal omega (ω) phase, can form in β-Ti alloys under quenching from the high temperature β phase and/or isothermal aging at intermediate temperature. Despite a substantial amount of reported works on the ω phase, there are several critical issues related to the ω formation need to be resolved, e.g. role of alloying elements and oxygen content. Therefore, this dissertation has attempted to provide insights into ω transformation in low misfit (Ti-Mo) and high misfit (Ti-V) binary systems as well as multicomponent (Ti-Nb-Zr-Ta) alloys. The evolution of ω structure, morphology and composition from the early stage (β-solution+quenched) to later stages after prolonged aging are systematically investigated by coupling transmission electron microscopy (TEM), atom probe tomography (APT) and high-energy synchrotron X-ray diffraction techniques. The influence of aging temperature and duration on characteristic of ω phase in Ti-Mo, and Ti-V alloys is addressed in details. It is found that compositional changes during aging can alter the structure, size and morphology of ω precipitates. In low misfit alloys, the ellipsoidal morphology of ω phase was retained during isothermal aging, while in high misfit alloys it changed from ellipsoidal to cuboidal morphology after prolonged aging. Secondly, ω transformation in biomedical Ti-Nb-Zr-Ta alloy is probed in which the micro-hardness was sensitive to microstructural changes. Furthermore, the evolution of oxygen concentration in ω precipitates during various aging conditions in binary Ti-Mo and Ti-V alloys are reported. It has been accepted that interstitial elements such as oxygen can largely alter mechanical behavior and the microstructure of Ti-alloys. Recently, oxygen is intentionally added ...
Date: December 2016
Creator: Hendrickson, Mandana
Partner: UNT Libraries

An Initial Study of Binary and Ternary Ti-based Alloys Manufactured Using Laser Engineered Net Shaping (LENSTM)

Description: In this study an initial assessment of the composition – microstructure – property relationships in binary and ternary Ti – based systems are made possible using LENSTM technology. Laser Engineering Net Shaping (LENSTM), a rapid prototyping, directed laser deposition methodology of additive manufacturing (AM) was used to create bulk homogenous specimens that are compositionally graded. Compositionally graded specimens were made possible by incorporating elemental blends of powder during the LENSTM process. While there have been numerous studies assessing the influence of common elements (e.g., V, Mo, Al, and Cr) on the resulting microstructure in titanium alloys, other elements have been neglected. A systematic study of the Ti – Fe – Al ternary system based upon varying compositions of the eutectoid former, Fe with Al to stabilize the a and b phases respectively has also been neglected. This research effort focuses on exploiting the LENSTM process by rapidly assessing the composition – microstructure – property relationships in a combinatorial approach for the Ti – W, Ti – Fe, and Ti – Fe – Al systems. Compositionally graded specimens of Ti – xW (0<x<40wt.%(14.79at.%)), Ti – xFe (0<x<35wt.%(36.37at.%)), and Ti – xFe – yAl (0<x<40wt.%(36.37at.%)), y=5,10, 15wt.%) have been heat treated to also assess the influence of thermal history on microstructural features such as phase composition and volume fraction. Lastly, a Ti – xMo (0<x<40wt.%(24.96at.%)) compositionally graded specimen was deposited to re-assess the Mo-equivalency nature of W, as well as assess the role of phase separation in microstructural evolution at temperatures above and below the invariant point (~695°C) of the Ti – W binary system.
Date: December 2015
Creator: Gray, Alyn M.
Partner: UNT Libraries

Characterization of Ti-6Al-4V Produced Via Electron Beam Additive Manufacturing

Description: In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron beam additive manufacturing (EBAM). The Sciaky EBAM method combines a high-powered electron beam, weld-wire feedstock, and a large build chamber, enabling the production of large structural components. In order to gain wide acceptance of EBAM of Ti-6Al-4V as a viable manufacturing method, it is important to understand broadly the microstructural features that are present in large-scale depositions, including specifically: the morphology, distribution and texture of the phases present. To achieve such an understanding, stereological methods were used to populate a database quantifying key microstructural features in Ti-6Al-4V including volume fraction of phases, a lath width, colony scale factor, and volume fraction of basket weave type microstructure. Microstructural features unique to AM, such as elongated grains and banded structures, were also characterized. Hardness and tensile testing were conducted and the results were related to the microstructural morphology and sample orientation. Lastly, fractured surfaces and defects were investigated. The results of these activities provide insight into the process-structure-properties relationships found in EBAM processed Ti-6Al-4V.
Date: December 2015
Creator: Hayes, Brian J.
Partner: UNT Libraries

Influence of shockwave profile on ejection of micron-scale material from shocked Sn surfaces: an experimental study

Description: This effort experimentally investigates the relationship between shock-breakout pressure and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of Sn targets shocked with a supported shockwave. The results are compared with an analogous set derived from HE shocked Sn targets, Taylor shockwave loading. The supported shock-pulse was created by impacting a Sn target with a Ti64 (Ti-6Al-4V) impactor that was accelerated using a powder gun. Ejecta production at the free-surface or back-side of the Sn targets were characterized through use of piezoelectric pins and Asay foils, and heterodyne velocimetry verified the time of shock release and the breakout pressure.
Date: January 1, 2009
Creator: Zellner, Michael B; Byers, Mark E; Hammerberg, James E; Germann, Tim C; Dimonte, Guy; Rigg, Paulo A et al.
Partner: UNT Libraries Government Documents Department

Fatigue Testing of Abrasive Water Jet Cut Titanium

Description: Battelle Memorial Institute as part of its U.S. Department of Energy (USDOE) Contract No. DE-AC05-76RL01830 to operate the Pacific Northwest National Laboratory (PNNL) provides technology assistance to qualifying small businesses in association with a Technology Assistance Program (TAP). Qualifying companies are eligible to receive a set quantity of labor associated with specific technical assistance. Having applied for a TAP agreement to assist with fatigue characterization of Abrasive Water Jet (AWJ) cut titanium specimens, the OMAX Corporation was awarded TAP agreement 09-02. This program was specified to cover dynamic testing and analysis of fatigue specimens cut from titanium alloy Ti-6%Al-4%V via AWJ technologies. In association with the TAP agreement, a best effort agreement was made to characterize fatigue specimens based on test conditions supplied by OMAX.
Date: June 8, 2009
Creator: Hovanski, Yuri; Dahl, Michael E. & Williford, Ralph E.
Partner: UNT Libraries Government Documents Department